Collisionless Shock and Particle Acceleration Computation and Experiment

H. Takabe (Aki) ILE, Osaka University, Japan

Meudon Observatory, Paris December 3, 2011

Challenging Basic Science in Laboratory Astrophysics

Scaling Parameters Controlling Physics

1. Hydrodynamics

$$M = \frac{U}{Cs}$$
$$Re = \frac{UL}{v} = M \frac{L}{\ell}$$
$$\propto M \times L \times n$$

2. Atomic Process

$$I_c = nt$$
 $\xi = \frac{L}{nR^2}$

3. Plasma Shocks

$$\sigma = \frac{B^2/\mu_0}{mnU^2} = \left(\frac{1}{M_A}\right)^2$$

4. Rel. Pair Plasmas

$$\Gamma = 10 - 100$$

Active, Multi-angle and Time-evolution Diagnostics are Possible

1. Hydrodynamic Instability and Turbulent Mixing

- **1. Test bed for Numerical Astrophysics**
- 2. New Finding of Physics not Expected
- **3. Provide Challenging Plasma Physics**
- 4. Prediction of Astrophysical Phenomena

1. To Validate and Verify Physics Models and Codes through Comparison with Model Experiments in Laboratory.

Example (1): Mixing in Supernova Explosion (B. Remington et al)

PROMETIUS Code for Astrophysics

Laser Experiment (Courtesy Kim Budil)

X-ray from Companion Star of Cyg X-3

11

The origin of x-ray emission near blackhole can be studied by using the implosion x-ray source.

S. Fujioka, **H. Takabe** et al., Nature-Physics, **5**, 11, pp 821-825 (2009)

What is Cosmic-Ray?

Cosmic Rays

- 1. Bow Shock of Earth
- 2. Bow Shock by CME
- 3. Pulsar Driven BS
- 4. Supernova Remnants
- 5. Cosmological Jets
- 6. Gamma-ray Bursts7.
- /•••••••
- 8.

SNR is Accelerator in Universe

Two Different Types of Shocks

Hydrodynamic Shock (Molecular Viscocity)	Plasma Shock (Collisionless)		
Supersonic Projectile (WT Exp.)	Solar Wind and Magnetosphere		
Shock	Shock bottomeretered		

19

Diffusive Shock Acceleration (Fermi Acceleration)

Widely Accepted in Astrophysics

NON-RELATIVISTIC COLLISIONLESS SHOCKS IN UNMAGNETIZED ELECTRON-ION PLASMAS

Tsunehiko N. Kato and Hideaki Takabe Astrophysical Journal **681**, L93–L96, Jul 2008

Generation of Magnetic Field

Weibel Instability in y-z Plane

Continued

Fig. (A) shows that a large fraction of electrons have been accelerated to light velocity in the shock transition region. However, the acceleration mechanism is not very clear. It _{IAPCM}may due to the shock acceleration! 25

Electron Trajectory

IAPCM

How are collisionless shocks formed?

ES collisionless shock experiment using GXII laser

PHYSICS OF PLASMAS 17, 122702 (2010)

Collisionless shock generation in high-speed counterstreaming plasma flows by a high-power laser

T. Morita,^{1,a)} Y. Sakawa,² Y. Kuramitsu,² S. Dono,³ H. Aoki,¹ H. Tanji,³ T. N. Kato,² Y. T. Li,⁴ Y. Zhang,⁴ X. Liu,⁴ J. Y. Zhong,⁵ H. Takabe,^{1,2} and J. Zhang⁶ ¹Graduate School of Science, Osaka University, 1-1 Machikane-yama, Toyonaka, Osaka 565-0871, Japan ²Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871, Japan ³Graduate School of Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871, Japan ⁴Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ⁵The National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China ⁶Shanghai Jiao Tong University, Shanghai 200240, China

⁶Shanghai Jiao Tong University, Shanghai 200240, China

(Received 11 October 2010; accepted 15 November 2010; published online 1 December 2010)

The experimental demonstration of the formation of a strong electrostatic (ES) collisionless shock has been carried out with high-speed counterstreaming plasmas, produced by a high-power laser irradiation, without external magnetic field. The nearly four times density jump observed in the experiment shows a high Mach-number shock. This large density jump is attributed to the compression of the downstream plasma by momentum transfer by ion reflection of the upstream plasma. Particle-in-cell (PIC) simulation shows the production of a collisionless high Mach-number ES shock with counterstreaming interaction of two plasma slabs with different temperatures and densities, as pointed out by Sorasio et al. [Phys. Rev. Lett. 96, 045005 (2006)]. It is speculated that the shock discontinuity is balanced with the momentum of incoming and reflected ions and the predominant pressure of the electrons in the downstream with PIC simulation. © 2010 American Institute of Physics. [doi:10.1063/1.3524269]

Collisionless shock generation in high-speed counterstreaming plasma flows by a high-power laser

T. Morita, ^{1,a)} Y. Sakawa,² Y. Kuramitsu,² S. Dono,³ H. Aoki,¹ H. Tanji,³ T. N. Kato,² Y. T. Li,⁴ Y. Zhang,⁴ X. Liu,⁴ J. Y. Zhong,⁵ H. Takabe,^{1,2} and J. Zhang⁶ Graduate School of Science, Osaka University, 1-1 Machikane-yama, Toyonaka, Osaka 560-0043, Japan ²Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871, Japan ³Graduate School of Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871, Japan ⁴Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences Review, 1000 China Chinese Academy of Sciences, Beijing 100190, China ⁵The National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China ⁶Shanghai Jiao Tong University, Shanghai 200240, China (Received 11 October 2010; accepted 15 November 2010; published online 1 December 2010)

We Need NIF to Demonstrate Universality

1. Shock width

$$\Delta X = 0.2 \text{ cm} \times \frac{1}{Z} \sqrt{\frac{A}{n_{20}}}$$

2. Coulomb mean-free-path

$$l = \frac{1}{n\sigma_0 ln\Lambda} = 20 \ cm \times \frac{A^2}{Z^4} \frac{V_8^4}{n_{20}}$$

3. Energy of counter-streaming plasma

$$\begin{array}{rcl} E &=& Zm_pn_iV^2L^3\\ &=& 70~kJ \end{array}$$

$$n_{20} = n/10^{20} \text{ cm}^{-3}$$

V₈=V/10⁸ cm/s

33

H. Takabe et al., Plasma Physics and Controlled Fusion **50**,124057 (2008)

OMEGA Laser at U of Rochester, NY, USA

"Astrophysical Collisionless Shock Generation in Laser Driven Experiments" OMEGA Facility, Dec. 14, 2010

Participating collaborators

- Hye-Sook Park (PI), Steve Ross (LLNL)
- Youichi Sakawa, Yasuhiro Kuramitsu (Osaka University, Japan)
- Dustin Froula (LLE)
- Chris Gregory (York University, UK)
- Anatoly Spitkovsky (Princeton, USA)
- Alessandra Ravasio (LULI, France)

LLNL (USA):

80	

Hye-Sook Park, D. Ryutov, B. Remington, S. Pollaine, S. Ross, S. Glenzer, N. Kugland, C. Sorce Osaka University (Japan): Y. Sakawa, Y, Kuramitsu, H. Takabe Oxford University (UK): G. Gregori, A. Bell Princeton University (USA): A. Spitkovsky, L. Gargate, L. Sironi LLE, Univ. of Rochester (USA): D. Froula, J. Knauer, G. Fiskel Ecole Polytechnique (France): M. Koenig, A. Ravasio ETH Zurich (Switzerland): F. Miniati York University (UK): N. Woolsey, C. Gregory Rice University (USA): E. Liang University of Rochester (USA): R. Betti University of Michigan (USA): E. Rutter, M. Grosskopf, C. Kuranz University of Nevada, Reno (USA): R. Presura

Abstract

We present progress in the use of proton imaging to study electric and magnetic fields that are relevant for collisionless shock formation in experiments at the OMEGA & OMEGA EP laser facilities. Collisionless shocks are important for understanding cosmic magnetic field generation and ultra high-energy cosmic ray acceleration.

We use lasers to model astrophysical plasma flows

Collisionless shock formation parameters

Collisionless growth scales		$\ell^* \ll \ell_{ ext{int}} \ll \lambda_{ ext{mfp}}$ Interaction length		Collisional MFP	
$\ell^* \propto rac{V_{ m flow}}{\omega_{ m pi}}$, $rac{c}{\omega_{ m pi}}$				$\frac{A_z^2}{Z^4} \frac{v_{\rm flow}^4}{n_z}$	
<i>n</i> _i (cm ⁻³)	$\frac{c}{\omega_{\rm pi}}$	v _{flow} (cm/s)	λ_{mfp}	ℓ_{int}/λ_{mfp}	
1	2x10 ⁷ cm	3x10 ⁸	4x10 ¹⁹ cm (42 light years)	2	
10 ¹⁸	100 µm	1x10 ⁸	1.5 mm	5	
	th scales $\frac{C}{\omega_{\rm pi}}$ $n_{\rm i}(\rm cm^{-3})$ 1 10 ¹⁸	th scales $\ell^* \ll \ell_{int}$ $\frac{c}{\omega_{pi}}$ Interact $n_i(cm^3)$ $\frac{c}{\omega_{pi}}$ 1 $2x10^7 cm$ 10^{18} 100 µm	th scales $\ell^* \ll \ell_{int} \ll \lambda_{mfp}$ $\frac{c}{\omega_{pi}}$ Interaction length $n_i(cm^{-3})$ $\frac{c}{\omega_{pi}}$ v_{flow} (cm/s) 1 2x10 ⁷ cm 3x10 ⁸ 10 ¹⁸ 100 µm 1x10 ⁸	th scales $\ell^* \ll \ell_{int} \ll \lambda_{mfp}$ Collision $\frac{c}{\omega_{pi}}$ Interaction length $\lambda_{mfp} \propto \frac{c}{\omega_{pi}}$ $n_i (cm^{-3})$ $\frac{c}{\omega_{pi}}$ $v_{fiow} (cm/s)$ 1 $2x10^7 cm$ $3x10^8$ $4x10^{19} cm$ (42 light years)10^{18}100 µm $1x10^8$ 1.5 mm	

D. Ryutov, 2010; Cassam et al, ApJ 680 1180 (2008); Bamba et al, ApJ 589, 827 (2003)

We are now conducting preparatory experiments on OMEGA through the LBS and NLUF programs

NIF

How are collisionless shocks formed?

Thomson Scattering Diagnostics

Collection Thomson scattering from ion-acoustic and electron-plasma waves is used to measure the plasma conditions Thomson scattering is the scattering of an electromagnetic wave by free electrons. Optical Laser (λ₀) E. $S(\mathbf{k},\omega) = \frac{2\pi}{2\pi}$ $2\pi Z$ Ø ω χ_e ε Plasma wave Θ λ_{D} **Electron Feature** lon Feature 10-22

Intensity

Our OMEGA experiments study the plasma conditions of single and double flows

Te

10-24

10-26

10-28

10-30

500 λ_0 600 Wavelength (nm)

Intensity

NIF

λο

527

526

Wavelength (nm)

525

INIE

INIE

An increased Hydrogen percentage is measured in the

Our OMEGA experiments study the plasma conditions of double flows using a two foil configuration

Omega experimental results show the first quantitative measurements of high-velocity interpenetrating plasma flows

NIF

NIF

Single flow Thomson scattering data is used to see if our plasma state can create collisionless shocks

Proton Back-lighting Diagnostics

High power laser experiments can study collisionless shock relevant micro-physics in the laboratory

Two each of the following:

- a) 351 nm 3 ns laser, 2200 J 100 µm spot, 9 x 10¹⁵ W/cm²
- b) Plasma ablation source 2 mm diameter CH₂ plastic
- c) 1053 nm 10 ps laser, 250 J 40 µm spot, 2 x 10¹⁸ W/cm²
- d) Proton source
 50 µm thick Au disk
- e) Proton source shields
 3 µm thick AI foil on an AI washer (2.7 mm ID)

We collected very interesting proton radiography data

Early turbulence and striations self-organize horizontally with time.

Images of single & counterstreaming plasmas flows

7 MeV proton imaging at 5 ns shows a dramatic difference (joint shot)

Simulated proton image (turbulent field Ansatz)

Proton motion was traced using the LSP (PIC) code in 3D. We see that soft turbulent objects generate sharp caustics in the proton image.

Turbulent field structures predicted by 3D PIC sims

Tristan-MP code, A. Spitkovsky.

Counterstreaming H plasmas: $v_{\text{flow}} = 10^8 \text{ cm/s}$ $n_i = 10^{18} \text{ cm}^{-3}$

Electric field is predicted to dominate proton imaging.

Turbulent fields are a signature of collisionless shock formation. Possibly due to electromagnetic (Weibel) or electrostatic (two-stream) instabilities.

Summary of our findings

- · We have seen very interesting proton images of plasma flows
- · Even a single plasma flow is complicated
- We might have observed the signatures of collisionless shock formation (turbulent fields and filamentation)

Path for future investigation in 2012 & beyond

- Study late-time evolution
- Vary target composition (CH₂, pure C)
- Try two different materials for strong B-field from current drive D. D. Ryutov et al, Phys. Plasmas **18**, 104504 (2011)
- Create fully formed collisionless shocks with the NIF laser (contingent on diagnostic availability)

National Ignition Facility

Science on NIF Committee just after the Evaluation July 15, 2010 at LLNL

Astrophysical collisionless shock generation on NIF

Pls: Y. Sakawa (Osaka U.) / G. Gregori (Oxford U.)

- Collaborators: A. Bell, A. Diziere, L. Gargate, S. Glenzer, C. Gregory, M. Hoshino, T. Ide, T. Kato, R. Kodama, M. Koenig, Y. Kuramitsu, E. Liang, M. Medvedev, F. Miniati, T. Morita, C. Niemann, H. Park, A. Ravasio, B. Remington, D. Ryutov, Y. Sentoku, A. Spitkovsky, H. Takabe, N. Woolsey, R. Yamazaki
- Institutions: Osaka, Oxford, LLNL, Princeton, Ecole Polytechnique, York, ETH Zurich, UCLA, Aoyama Gakuin, Tokyo U., Kansas, Rice

Scientific Objectives:

- (1) To study the generation of high Mach-number non-relativistic collisionless shocks relevant to SNRs and protostellar jets
- (2) To study the formation of self-generated magnetic fields from the Weibel instability and cosmic ray acceleration

Why NIF?

 Ability to reach high Mach numbers, much higher than possible in classical plasma shock tubes or at other laser facilities

Collisionless Shock Experiment with NIF

NIF is the facility where properly scaled astrophysical shock experiments in this regime are possible

Summary and future work

- Detection of self-generated electromagnetic fields from plasma instabilities such as Weibel instability will be a break-through in laboratory astrophysics and may provide a generation mechanism of the seed magnetic fields in universe
- Omega experiments measure quantitative plasma conditions for optimizing collisionless shock creation
- Omega experiments suggests the existence of previously unknown mechanisms for electric and/or magnetic field generation in the counterstreaming plasma flows
- We are continuing in our Omega and EP experiments to study collisionless shock formation under pre-existing magnetic fields as well as theory and experimental optimization
- · NIF experiments will begin when the required diagnostics are constructed
- NIF experiments will lead to a truly scaled collisionless shock laboratory astrophysics experiment

• See also Y. Sakawa's talk on Fri (Session N+O 13:30 pm, Room C)

"Imagination is more important than knowledge" Albert Einstein