Magnetized Core-Collapse with Resistivity

Hidetomo Sawai Tokyo University of Science

Collaborators

Kei Kotake (NAOJ) Shoichi Yamada (Waseda University Hideyuki Suzuki (Tokyo University of Science)

Formations of Compact Objects: from the cradle to the grave Mar. 7 - 9, 2012

1. Intorduction

Magnetized Supernova

✓ SN supported by B-field (and Rotation) (LeBlanc & Wilson '70)

$$\mathsf{E}_{\mathsf{grv}} \rightarrow (\mathsf{E}_{\mathsf{rot}} \rightarrow) \mathsf{E}_{\mathsf{mag}} \rightarrow \mathsf{E}_{\mathsf{kin}}$$

One of the scenarios of a core-collapse supernova

✓ Requires a magnetic flux of a magnetar class

 \rightarrow Magnetar candidates possibly originate from magnetized SNe

✓ has been studied well for past several years

The resistivity in a magnetized SN

Previous works ignores the resistivity

Magnetic Reynolds number in PNS (with the Spitzer resistivity)

$$R_{m} = \tau_{dif} / \tau_{dyn} \sim 8 \times 10^{15} \left(\frac{Z}{26}\right) \left(\frac{L}{4 \times 10^{5} cm}\right) \left(\frac{T}{5 \times 10^{10} K}\right)^{3/2} \left(\frac{v}{2 \times 10^{8} cm / s}\right)$$

But,

A Turbulent Resistivity may be important.

Due to a convection

→
$$\eta \sim 10^{13} - 10^{14} \text{ cm}^2 \text{ s}^{-1}$$
 (T. A. Thompson+'05)

$$\rightarrow R_{m,max} \sim 1 - 10$$

<u>This work</u>

We study roles of a turbulent resistivity in a magnetized core-collapse by carrying out 2D-axisymetric resistive MHD simulations.

2. Numerical Code and Models

Numerical code

2D Resistive MHD code

"yamazakura → 桜"

- Time explicit Finite volume method
 - → High resolution central scheme (Kurganov & Tadmor '00)
- 3rd ord. in time, 2nd ord. in space
- Numerical viscosity: $\sim (\Delta x)^3 (a(u)u_{xxx})_x$.
- Constraint Transport scheme (for divB=0 and divJ=0)
- Introduction of a resistive term
- Poisson solver: MICCG(1,2)

	ጉ	朝	ス	大	敷
	桜	E	问	和	馬
本	花	に	わ	5	の
居		匂	ば	を	
宣		ふ			
長					

Resistive Magnetohydrodynamic (MHD) Equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 & \text{Mass conservation} \\ \frac{\partial}{\partial t} (\rho \mathbf{v}) + \nabla \cdot \left(\rho \mathbf{v} \mathbf{v} - \frac{\mathbf{B} \mathbf{B}}{4\pi} \right) &= -\nabla \left(p + \frac{B^2}{8\pi} \right) - \rho \nabla \Phi & \text{Momentum conservation} \\ \frac{\partial}{\partial t} \left(e + \frac{\rho v^2}{2} + \frac{B^2}{8\pi} \right) & \text{Energy conservation} \\ + \nabla \cdot \left[\left(e + p + \frac{\rho v^2}{2} + \frac{B^2}{4\pi} \right) \mathbf{v} - \frac{(\mathbf{v} \cdot \mathbf{B}) \mathbf{B}}{4\pi} + \frac{\eta}{c} \mathbf{j} \times \mathbf{B} \right] &= -\rho (\nabla \Phi) \cdot \mathbf{v} \\ \frac{\partial \mathbf{B}}{\partial t} + \nabla \times \left(- \mathbf{v} \times \mathbf{B} + \frac{4\pi \eta}{c} \mathbf{j} \right) &= 0 & \text{Induction Eq.} \\ \Delta \Phi &= 4\pi G \rho & \text{Poisson Eq.} \end{aligned}$$

-Shen's EOS -Ye: a function of density (Liebendorfer '05) ✓ Numerical domain :

- Progenitor: 15 M_{\odot} (r~10¹³ cm) (Woosley '95)
- a quarter of the meridian plane of a core of a 4000 km radius
- Axisymmetric, equatorially-symmetric
- ✓ Numerical grids :
 - cylindrical coordinate
 - $N \times Nz = 720 \times 720$ (nonuniform)
 - resolution in the center: 400 m

✓Numerical model

	<u>/ </u>						
Dipole B-field + (differential rotation)		Rotation		No-Rotation			
	Magnetic energy M/W (%)	0.5		5.0			
	Rotational energy T/W (%)	0.5		0.0			
	resistivity η (cm²/s)	0	10 ¹³	1014	0	10 ¹³	1014

3. Results

Dipole M/W=0.5% Rotation

The Evolution of The Explosion Energy

Resistivity weaken the explosion.

Force per unit mass (dyne/g)

Dipole M/W=5.0% No-Rotation

Velocity direction & Density

38 ms after bounce

✓ Resistivity enhances the explosion.

An enlarged view Velocity direction & Density

 $\eta=0$: An Inflow of a negative momentum from the infall region to expulsion region damages the matter eruption.

 η =10¹⁴ : A positive-momentum island protect the expulsion region from the inflow.

The radial-distribution of a radial velocity (infall region)

t=175 ms

The radial-distribution of a radial force (infall region)

Solid lines: $\eta=0$ Dashed lines: $\eta=10^{14}$

A force is larger in η =10¹⁴ around100 – 200 km \rightarrow due to a magnetic force.

The radial-distribution of a B-field (infall region, log)

Solid lines: $\eta=0$ Dashed lines: $\eta=10^{14}$

t=175 ms

 \checkmark A strong B_{θ} around the center diffuses outward

4. Summary

We have done 2D-MHD simulations of strongly-magnetized core-collapses under low magnetic Reynolds numbers.

✓A turbulent resistivity possibly affect the dynamics of a core-collapse.

-In a rotating case: The explosion is weakened by a resistivity

- \rightarrow An amplification of B-field is suppressed.
- -In a non-rotating case: The explosion is enhanced
 - → A strong B-field around the center diffuses outward and prevent a matter falling around the equator, which otherwise damages a a matter eruption in the expulsion region.

<u>Future works</u>

- ✓ 3D simulations
- ✓ Numerical simulations of a collapse of a weakly-magnetized core.