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History of studies of supernovae

e Colgate & White ’ 66

began simulation

e Wilson’ 82

delayed explosion

e Very sophisticated simulations

under 1D could not reproduce
supernovae explosions(e.g.
Sumiyoshi et al. ~ 05).

Supernovae modelers devote
about 50 years to solve neutrino

transport with adequate accuracy.
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Breakthrough by 2D simulations
Murphy & Burrows 2008
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Note that the explosion energy

of that is very small.
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g Open problem:
dlmensmnal supernovae modelmg
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2000 kilometers

—— Nordhaus et al. 2010 - | Takiwaki et al. 2012

— Hanke et al. 2012

Gray, light bulb ~ Gray, light bulb Spectral transport
AMR High resolution Low resolution
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\_ (my estimation) rdd~40km /
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F MPA group said ....
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Resolution study
At Moderate res. : 2D<3D (a little)

At High res. : 2D > 3D
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Motivation of this study

The effect of three dimensional convection is open
question!

. Nordhaus et al. 2010
Here I want to discuss a | | |

> 32 T
11 . I . . Yl
realistic situation. 3 =l OB/
-

T 26

—L=3x10"52erg/s with =

diminishing trend '/ED/‘ j
3D
—Average energy of neutrino NI j

changes
—The cooling of v X

With IDSA neutrino transport scheme, we performed 3
dimensional simulations under the situation.

Mass accretion rate
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IDSA Neutrino transport, concept

IDSA( isotropic diffusion source
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Dividing neutrino into two parts. Trapped and free streaming.
For v_X, simple leakage scheme
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IDSA: trapped part
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IDSA: free streaming part
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Angular integration |Ray-by-Ray approximation is used
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Different from the original IDSA, f(x,y,z,E)

We treat the LHS explicitly and the RHS implicitly. 4 dimensional variable

Newton Method is used for solving RHS.
K No message passing during the iteration.
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320x64x32
(Takiwaki+12)

320x64x128
r:0-5000km

3D sim. begins
from 10ms
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(K=180MeV)
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Evolution of Shock
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High—resolution—3D model is the best!
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Difference of Resolution

. 300x64x32 L 320X64¥125 .
Fine structure inside the shock is found in

. high—resolution model!
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Anisotropy of shock, SASI activity
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" Fourier Analysis A
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Fourier analysis is given by these
step.
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L0 1. Cal. angle averaged radial

2 -~ At 100ms | velocity
g 1e-07 | ul
~ el M /1 2. Cal. Deviation of the velocity

leoo L N from the averaged velocity

. preliminary analysis :
1.1 LOFIMINATY ANAYO 3. Fourier transform the
0.001 0.01 0.1 . ]
Wave number [1/km] velocity got in the step?2.

The power law index is steeper than —5/3.

Effective resolution is coarse for 2D that might suppress the
growth of the turbulence. In the small scale(large wave number),
power of 3D is bigger than 2D.

\_ Coarse grid gives weaker power especially in the small scale. -




Advection time vs Heating time

Heating dominant

\Stalled shock

p+e S2n—+ v,
n+et Zp+ 0,

~200km
~60km  Gain radius~100km
Advection time scale: Heating time scale:
Accreted matter passes heating After this time scale, the matter
dominant region in this time scale become unbound from gravitational
potential
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The ratio of the two time scale is important probe to judge success of
supernovae.
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/Advection time vs Heating time
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The ratio of the two timescale of 3D is actually bigger than the
others.
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Neutrino Heating 3D vs 2D
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[racer Particle analysis

We performed tracer particle analysis.

Deposit particles everywhere and follow their advection.
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‘Advection timescale:
detailed comparison 3D vs 2D

iInside the gain region region
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‘Advection timescale:
detailed comparison Resolution dependence
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Inside the gain region
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Summary

We performed 3D simulations that begins with core—collapse of
11.2 M_s progenitor with spectral neutrino transport.

We find the average shock radius of 3D high resolution model go
faster than the other models.

That is mainly because the neutrino luminosity of that models is
larger than 2D.

Dwell time of 3D high res. model is longer than the other model.

The difference might gives critical difference in the case of a
heavy progenitor.

Anyway to conclude robustly, more high—resolution study will be
necessary.




Test Computation with K computer

Using K computer, we
can perform a study
with longer duration.

320x64x128
4096 parallel

This is just a test, we
aim studies with higher
resolution.
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Neutrino Luminosity [1052 erg/s|
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Neutrino Heating 3D vs 3D low
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Luminosity is not so different between models.
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In Takiwaki+ 2012, the shock of 2D is more energetic than 3D.

\ Because average energy of neutrino is bigger than that of 3D. /




