Mass and Metallicity Dependence of Massive Star Evolution

Takashi Yoshida

吉田 敬

Department of Astronomy, University of Tokyo

Collaborators Hideyuki Umeda, Shinpei Okita, Koh Takahashi

Formations of Compact Objects: from the cradle to the grave March 7, 2012, Waseda University

Introduction

• Massive stars $(M_{\text{init}} \ge 10 M_{\odot})$ **Progenitors of supernovae** Core structure *Explosion* mechanism **Final mass, surface composition** Supernova types (II, IIn, Ib, Ic) Variety of supernovae (Super-luminous, faint) Initial mass, metallicity Rotation, magnetic field, ...

Very massive stars

135 - 265 M_{\odot} WN5h stars in R136 cluster

 $M_{\rm init} = 165 - 320 M_{\odot}$

Introduction

- Updating massive star evolution code
 - Evolution sequence
 - Initial mass dependence of final mass, (He, CO, Fe) core masses (M_{init} = 10 - 300M_☉, Z=0.02)
 - Comparison with models in other groups
 - Metallicity dependence (Z=10⁻⁴ 0.02)
 - Supernova explosions evolved from very massive stars

Massive Star Evolution Code

Stellar evolution model

 Based on Saio code (Saio, Nomoto, and Kato 1988; Umeda & Nomoto 2008)
 From H burning to the onset of core-collapse

Mass loss rate

Main-sequence Vink et al. $(2001) \propto Z^{0.69}$, $Z^{0.64}$

Red giant \longrightarrow de Jager et al. (1988) (Metallicity dependence: $\propto Z^{0.64}$)

Wolf-Rayet stars Nugis & Lamers (2000) (Metallicity dependence: Vink & de Koter 2005)

- Convection criterion
 - Schwarzschild criterion

Massive Star Evolution Code

- Stellar evolution model
 - EOS and neutrino energy loss rate

 Adopted from Umeda & Nomoto (2005)

 Nuclear reaction network

 282 species of nuclei from n, ¹H to Br
 Thermonuclear reaction rates
 - JINA reaclib (Cyburt et al. 2010) ${}^{12}C(\alpha,\gamma){}^{16}O$ rate: 1.5×CF88

Weak interaction rates

Langanke & Martinez-Pinedo (2001) Oda et al. (1994) Fuller, Fowler, & Newman (1985) Takahashi & Yokoi (1984)

log $\rho_{\rm C}$ -log $T_{\rm C}$ Diagram

• Z=0.02 stars

H-exhaustion

He-exhaustion

• C-exhaustion

• Ne-exhaustion

O-exhaustion

• Si-exhaustion

• Core collapse

H-exhaustion

• He-burning

Evolution of 40 *M*_o, *Z*=0.02 Star

• He-burning

• He-burning

He-exhaustion

• C-exhaustion

• Core collapse

Final Mass

• Initial mass dependence (Z=0.02)

 M_{He} : The largest mass coordinate satisfying $X(\text{H}) < 10^{-3}$ M_{CO} : The largest mass coordinate satisfying $X(\text{He}) < 10^{-3}$

Final Mass

Comparison with models in other groups (Z=0.02)

YU: This study UN: Umeda & Nomoto (Nomoto et al. 2006, etc.) LC06: Limongi & Chieffi (2006) HMM04: Hirschi, Meynet, Maeder (2004)WHW04: Woosley, Heager, Weaver (2002)**RH02: Rauscher, Heger, Hoffman, Woosley (2002)** EG11: Ekstrom et al. 2011

Red giants A B C C Wolf-Rayet stars

Final Mass

Comparison with models in other groups (Z=0.02)

CO Core Mass

Comparison with models in other groups (Z=0.02)

Fe Core Mass

•Fe core

The largest mass coordinate satisfying *X*(Ti-) > 0.5

Mass & Metallicity Dependence of Final Mass

TY, Okita, & Umeda (2012) in prep.

Mass & Metallicity Dependence of CO Core

Mass & Metallicity Dependence of CO Core

*M*_{init} > 40 - 100 *M*_☉, *Z* > 0.001 stars Possibility of super-luminous type Ic supernovae

Super-Luminous SNe Ic

SN 2007bi

 \longrightarrow $M(^{56}Ni) \sim 3 - 7 M_{\odot}$

PISN? (Gal-Yam et al. 2009) CCSN? (Moriya et al. 2010)

SN 2010gx, (SN 2005ap) (Quimby et al. 2011)

 $M(^{56}Ni) \sim 1 M_{\odot}$

Rapid light curve decrease **Explosion mechanism?**

SNe Ic from very massive stars
Progenitor: M_{init} = 110 M_☉, Z = 0.004 star → WR star
⁵⁶Ni amount

⁵⁶Ni Production in a SN with $M_{init} = 110M_{\odot}$

• $M_{\text{init}} = 110 M_{\odot}, Z = 0.004 \text{ star}$

TY, Okita, & Umeda (2012) in prep.

⁵⁶Ni Production in a SN with $M_{init} = 110M_{\odot}$

• $M_{\text{init}} = 110 M_{\odot}, Z = 0.004 \text{ star}$

TY, Okita, & Umeda (2012) in prep.

WO star: $M_{\rm f} = 43.2 M_{\odot}, M_{\rm CO} = 38.2 M_{\odot}$ Axisymmetrical CC SN Ic, $E_{\rm ex,51} = 30$

5 4 $M_{\rm ejecta}/10$ Yield (M_{\odot}) N C $\theta_{\rm op}$ kinetic energy injection $M(^{56}Ni)$ 0₀ 20 40 **60** 80 θ_{op} Small θ_{op} Small amounts of ⁵⁶Ni and total ejecta

Conclusions

Updating massive star evolution code

Mass dependence (Z = 0.02)
 M_{init} < 40 M_o Red giants
 M_{init} > 40 M_o Wolf-Rayet stars: M_f ~ 10 M_o
 Effect of mass loss Smaller than models in other groups
 Iron core Mass dependence is complicated

Metallicity dependence

Evolution to Wolf-Rayet stars \implies $Z \ge 0.001$

 $M_{\text{init}} > 40 - 100 M_{\odot}, Z > 0.001 \text{ stars}$

Possibility of super-luminous SNe Ic

• Supernova evolved from $M_{init} = 110 M_{\odot}$, Z = 0.004 star

Spherical SN Ic with $E_{ex,51} > 20$

56Ni amount appropriate for SN 2007bi

Axisymmetrical SN Ic >> Smaller amount of total ejecta and ⁵⁶Ni