The Evolution of Massive Single and Binary Stars

Philipp Podsiadlowski (Oxford)

- large observed diversity of supernova types and sub-types
- $\rightarrow\,$ large diversity of evolutionary paths for massive stars?
- discuss the role of
 - ▷ metallicity and mass loss
 - ▷ rotation and magnetic fields
 - ▷ binary evolution
- for envelope evolution and core evolution and final fate

"Geneva models" (Schaller et al. 1992)

Heger et al. (2003)

Meynet & Maeder (2005)

Heger et al. (2003)

Neutron Star Formation

Iron core collapse

- inert iron core $(> M_{Ch})$ collapses
 - presently favoured model:
 delayed neutrino heating
 to drive explosion

Electron-capture supernovae

- occurs in degenerate ONeMg core
 - $\label{eq:constraint} \begin{array}{l} \triangleright \mbox{ at a critical density } \\ (4.5\times10^9\,g\,cm^{-3}),\ corresponding \\ \mbox{ to a critical ONeMg core mass } \\ (1.370\pm0.005\,M_\odot),\ electron \\ \mbox{ captures onto } ^{24}Mg\ removes \\ \mbox{ electrons (pressure support!)} \end{array}$
- \rightarrow triggers collapse to form a low-mass neutron star
- note: essentially the whole core collapses
- \rightarrow easier to eject envelope/produce supernova
- \rightarrow no significanct ejection of heavy elements

The Progenitors of E-capture Supernovae (Nomoto 1982, 1984)

- He cores with $M_{\rm He} = 2.0 2.5 \, M_{\odot}$ lead to e-capture supernova $(M_{\rm MS} = 8 - 10 \, M_{\odot})$
- significant fraction of neutron stars (NSs) produced in e-capture supernova
- Crab pulsar:
 - ▷ can explain low kinetic energy of ejecta ($\leq 10^{50}$ erg)

but: no hydrogen

- \rightarrow loss of H-rich envelope by binary interaction?
- \rightarrow requires reverse evolution + binary break-up (\rightarrow space velocity?) (Pols, Nomoto)

Simulations of E-capture Supernovae

Dessart et al. (2006)

Kitaura, Janka, Hillebrandt (2006) Recent simulations confirm

- successful explosion by delayed neutrino mechanism
- low explosion energy: $\sim {
 m few} imes 10^{50} \, {
 m erg}$ (low binding energy; also Crab!)
- few metals ejected
- fast explosion: $100 200 \,\mathrm{ms}$
- \rightarrow low neutron-star kick
- best" present model for NS kick: standing accretion shock instability (Blondin,

Mezzacappa, Foglizzo, Janka) requires slow explosion ($\gtrsim 500 \,\mathrm{ms}$) for instability to grow

Binary Evolution Effects

- $\begin{array}{l} \bullet \ dredge-up \ in \ AGB \ phase \ may \ prevent \\ ONeMg \ core \ from \ reaching \ M_{crit} \rightarrow ONeMg \\ WD \ instead \ of \ collapse \end{array}$
- can be avoided if H envelope is removed by binary mass transfer
- \rightarrow dichotomous kick scenario (P. et al. 2004)
 - $\triangleright \text{ e-capture SN in close binaries} \rightarrow \text{low kick}$ $\triangleright \text{ iron core collapse} \rightarrow \text{high kick}$
- can explain
 - > all single pulsars seem to have received large kicks (Hobbs, Lyne, Lorimer)
 - but need low kicks in some X-ray binaries(e.g. X Per) with low eccentricity (Pfahl)
 - > retention of neutron stars in globular clusters (Pfahl, Ivanova, Belczyński)
 - b double neutron star properties (v.d. Heuvel, Dewi), specifically the double pulsar

Recent Work

Arend Jan Poelarends (PhD Thesis):

- examined conditions for e-capture SNe on metallicity, wind mass loss, dredge-up efficiency in AGB stars
- best model: no e-capture SN at solar Z

Pols: mass transfer in He-star binaries may prevent e-capture SN \rightarrow reduced parameter space

• but: possibility of binary break-up (Crab?)

The origin of supernova kicks

- dramatic recent progress in neutrino-driven core-collapse simulations
- supernova kicks produced by standing accretion shock instability (SASI) (Blondin, Mezzacappa, Foglizzo, Janka)
- driven by advective-acoustic instability
- l = 1 instability
- comes in two flavours:
 - \triangleright sloshing instability (m = 0)
 - \triangleright spiral mode (m = ±1)
- can produce kicks of a few $100 \,\mathrm{km}\,\mathrm{s}^{-1}$ if the collapse phase lasts $\gtrsim 500 \,\mathrm{ms}$ (many growth timescale)
- can torque the proto-NS and produce the pulsar spin $(P_{spin} \sim 100 200 \, ms)$ (Blondin & Mezzacappa 2007)

Sloshing Instability (l = 1, m = 0)

(Janka, Scheck, Foglizzo)

Iwakami et al. (2008)

Testing the Equation of State of Nuclear Matter (P. et al. 2005)

- $\label{eq:constraint} \begin{array}{l} \bullet \mbox{ critical density for e-capture in} \\ ONeMg \mbox{ core } \to \mbox{ critical collapse} \\ mass: \ M_{crit} = 1.370 \pm 0.005 \ M_{\odot} \\ (\mbox{ Lesaffre}) \ (\mbox{ no rotation!}) \end{array}$
- post-SN NS mass = pre-collapse core mass – binding energy
- binding energy depends on the equation of state

 $\begin{array}{l} \text{complications: core mass loss in} \\ \text{explosion (a few } 10^{-3}\,M_\odot) \end{array}$

(Newton, Miller, Stone)

Schwab, Podsiadlowski & Rappaport (2010)

Table 2 14 Well-measured Neutron-star Masses						
Pulsar Name	Mass of Recycled Neutron Star (M_{\odot})	Mass of Young Neutron Star (M_{\odot})	Perb (hours)	Eccentricity	Pulse Period (ms)	Reference
J0737-3039A/B	1.3381 ± 0.0007	1.2489 ± 0.0007	2.4	0.088	23	Kramer et al. (2006)
B1534+12	1.3332 ± 0.0010	1.3452 ± 0.0010	10.1	0.273	38	Stairs et al. (2002)
J1756-2251	1.32 ± 0.02	1.24 ± 0.02	7.67	0.18	28	Stairs (2008)
J1906+0746	1.365 ± 0.018	1.248 ± 0.018	3.98	0.085	144 ^a	Kasian (2008)
B1913+16	1.4414 ± 0.0002	1.3867 ± 0.0002	7.92	0.617	59	Weisberg & Taylor (2005)
B2127+11C	1.358 ± 0.010	1.354 ± 0.010	8.05	0.681	30	Jacoby et al. (2006)
J1909-3744	1.438 ± 0.024	White dwarf	36.7	\$10-6	2.9	Jacoby et al. (2005)
J1141-6545	White dwarf	1.27 ± 0.01	4.74	0.172	393 ^a	Bhat et al. (2008)

Notes. All known neutron stars with a mass measured with better than 0.025 Mo accuracy.

^a These periods are said to be associated with the "young pulsar."

• Schwab et al. (2010): looking only at NS with well-determined masses \rightarrow bimodal NS mass distribution with e-capture and Fe core collapse peak

but prediction: first SN more likely to be ecapture \rightarrow may disfavour standard model for double pulsars

SCHWAB	, PODSIADLOWSK	I, & RAPPAPORT
--------	----------------	----------------

Table 3 Order of Fe Core-collapse Versus e-capture SNe

Category	Neutron-star Formation Type and Order	Standard Scenario	Double Core Scenario	Observed
I	Fe core collapse + Fe core collapse	Possible	Probable	Yes
П	e-capture + Fe core collapse	Most favored	Inconsistent	No
Ш	Fe core collapse + e-capture	Possible	Probable	Yes
IV	e-capture + e-capture	Possible	Some fine tuning	No

• is there a third peak in the NS mass distribution? (Timmes, van den Heuvel; Vela X-1?)

- Demorest et al. (2010): PSR 1614-2230
 - $\label{eq:MNS} \begin{array}{l} \triangleright \ \mathbf{M_{NS}} = 1.97 \pm 0.04 \ \mathbf{M_{\odot}}, \\ \mathbf{M_{WD}} = \mathbf{0.5} \ \mathbf{M_{\odot}} \end{array}$
 - b massive WD requires intermediate-mass progenitor (Li et al. 2011; Tauris et al. 2011)
- $ightarrow \ relatively \ massive \ NS \ at \ birth \ (> 1.6 \ M_{\odot})$
- Janssen et al. (2008): PSR J1518+4904
 - \triangleright double-NS system with
 $$\label{eq:M1} \begin{split} M_1 < 1.17\,M_\odot, \\ M_2 > 1.55\,M_\odot \end{split}$$
 - b lowest NS mass (from direct collapse):

 $\begin{array}{l} {\rm Chandrasekhar\ mass\ for\ Fe} \\ {\rm core\ } (\sim 1.27\,M_{\odot}) \rightarrow \\ {\rm M}_{\rm NS}^{\rm min} \sim 1.15\,M_{\odot} \end{array}$

Li, Rappaport, Podsiadlowski (2011)

Knigge, Coe & Podsiadlowski (2011)

- spin period may be a better proxy for NS formation channel (?)
- comparable numbers of Fe core collapse and e-capture NSs
 - but probably once case BB mass transfer is taken into account (work in progress)
- Be X-ray binaries may be useful for constraining NS formation and the formation of double NS binaries

Summary of Explosion Types

- Neutron-star formation
 - \triangleright classical iron core collapse \rightarrow typical core collapse: $10^{51}\,ergs$ (single and binary)
- Black-hole formation
 - \triangleright prompt collapse: \rightarrow failed supernova
 - \triangleright fall-back: \rightarrow faint supernova
 - > expected fate for most single WR stars (except at very high metallicity; see Heger, Meynet, Georgy)
 - $\triangleright \mbox{ with rapid rotation: collapsar/hypernova} \rightarrow \mbox{ energetic supernova (hypernova, GRB SN) (only 1 in 10^3)}$
- thermonuclear explosion of Chandrasekhar-mass CO WD in a binary (or inside AGB envelope at low Z?)
- He detonation on accreting CO white dwarf \rightarrow explosive \rightarrow supernova-like (faint SN Ia?)
- pair-instability supernova for very massive stars (low Z?) (> 140 M_{\odot}): creation of electron/positron pairs \rightarrow explosive nuclear burning \rightarrow complete disruption of the star

Heger et al. (2001)

Causes of Massive Star/Supernova Diversity

- binarity
 - > supernova appearance (mass loss/accretion, merging)
 - ▷ core structure
- metallicity
 - \triangleright appearance (mass loss, compactness)
 - ▷ core evolution
- rotation/magnetic fields
 - > important in early evolutionary phases
 (only?), e.g. through mixing (magnetic
 fields prevent rapidly rotating evolved cores
 (Spruit))
- dynamical environment
 - hinspace e.g. in dense clusters \rightarrow dynamical interactions \rightarrow different final products (dynamical mergers \rightarrow more HNe?)

Fukuda (1982)

Observations ...

object	$_j/\mathrm{cm}^2\mathrm{s}^{-1}$	P or $v_{ m rot}$
$MS M < 1.2 M_{\odot}$	10^{16}	$v_{ m rot}\simeq 2{ m kms^{-1}}$
MS $M>1.2M_{\odot}$	10^{18}	$v_{ m rot}\simeq 200{ m kms^{-1}}$
young pulsars	$10^{13}\ldots 10^{14}$	$P=10100\rm{ms}$
isol. WDs	$< 10^{14}$	$v_{ m rot} < 20{ m kms^{-1}}$
accr. WDs (CVs)	10^{16}	$\dots 1000{\rm kms^{-1}}$
MSP	$\sim 10^{16}$	
long GRB	$> 310^{16}$	

(from N. Langer)

Heger et al. (2005)

The role of rapid rotation

- homogeneous evolution for very rapily rotating MS stars
- stars evolve to the blue (i.e. skip red-giant phase)

Maeder (1987)

Yoon & Langer (2005) [also Woosley & Heger (2006)]

Yoon et al. (2006)

Binary Interactions

- most stars are members of binary systems
- a large fraction are members of interacting binaries (30 50%)
- Sana et al. (2012):

 $75\,\%~{
m for}~{
m O}~{
m stars}~{
m with}~{
m M} \gtrsim 15\,{
m M}_{\odot}$

- note: mass transfer is more likely for post-MS systems
- mass-ratio distribution:
 - \triangleright for massive stars: masses correlated
 - \triangleright for low-mass stars: less certain
- binary interactions
 - ▷ common-envelope (CE) evolution
 - ▷ stable Roche-lobe overflow
 - binary mergers
 - ▷ wind Roche-lobe overflow

Classification of Roche-lobe overflow phases

Stable Mass Transfer

- mass transfer is 'largely' conservative, except at very mass-transfer rates
- mass loss + mass accretion
- the mass loser tends to lose most of its envelope \rightarrow formation of helium stars
- the accretor tends to be rejuvenated (i.e. behaves like a more massive star with the evolutionary clock reset)
- orbit generally widens

Unstable Mass Transfer

- dynamical mass transfer →
 common-envelope and spiral-in phase
 (mass loser is usually a red giant)
 - b mass donor (primary) engulfs secondary
 - spiral-in of the core of the primary and the secondary immersed in a common envelope
- if envelope ejected \rightarrow very close binary (compact core + secondary)
- otherwise: complete merger of the binary components \rightarrow formation of a single, rapidly rotating star

PhP & Joss (1989)

The Progenitor of SN 1993J

- prototype SN IIb
- progenitor: stripped K supergiant (< $0.5 \, \mathrm{M_{\odot}}$ envelope)
- \bullet initial mass: $\simeq 15\,M_{\odot}$
- most likely due to late binary interaction (Joss et al. 1988; Podsiadlowski; Nomoto; Woosley 1993)
- predicted companion star has been found (Maund et al. 2004)
- Potential Problem: predicted rate too low to explain all IIb? (PJH 1992; Claeys 2009)
- other channel or clue to binary evolution?

The Double Pulsar (PSR J0737-3039)

- $\begin{aligned} \bullet \ P_{\rm orb} &= 2.4 \, h, \ M_{\rm A} = 1.338 \, M_\odot \ \left(P_{\rm A} = 22.7 \, ms \right), \\ M_{\rm B} &= 1.249 \, M_\odot \ \left(P_{\rm B} = 2.77 \, s \right) \end{aligned}$
- lower-mass pulsar formed in e-capture supernova?
- circumstantial evidence:
 - \triangleright low mass of $1.249\,M_{\odot}$ close to expected mass from e-capture SN
 - > evidence for low kick: low eccentricity, low space velocity, Pulsar A spin aligned with orbital axis (no geodetic precession)

note: Pulsar B not aligned if kicks induces torque (Blondin & Mezzacappa 2007)

'Standard' Channel

 $\begin{array}{l} High-mass \ X\text{-}ray \ binary \ phase\\ \text{leading to unstable mass}\\ \text{transfer and a}\\ \text{common-envelope and}\\ \text{spiral-in \ phase and \ leaving}\\ M_{\rm A}^{\prime}=1.337\,M_{\odot},\\ M_{\rm He}^{\rm B}=2.4\,M_{\odot},\,P_{\rm orb}=2.8\,{\rm hr} \end{array}$

Helium star mass transfer phase (+ spin-up of neutron star) leaving $M_{\rm A} = 1.338 \, M_{\odot}$, $M_{\rm He} = 1.559 \, M_{\odot}$, $P_{\rm orb} = 2.6 \, \rm hr$

 $\begin{array}{l} Immediately \ after \ second \\ supernova: \ M_{\rm A} = 1.338 \ M_{\odot} \,, \\ M_{\rm B} = 1.249 \ M_{\odot} \,, \ P_{\rm orb} = 3.3 \ {\rm hr} \,, \\ e = 0.12 \,, \ \Delta v_{\rm sys}^{\rm B} = 35 \ {\rm km \ s^{-1}} \end{array}$

Double-Core Channel

Initial binary: $M_1 = 11.5 M_{\odot}$, $M_2 = 11 M_{\odot}$, $P_{orb} = 3.1 \text{ yr}$

Unstable Case C mass transfer: secondary expands to fill its Roche lobe

He CO

 $\begin{array}{l} Double-core\ common-envelope\\ and\ spiral-in\ phase\ leaving\ a\\ CO\ star\ with\ M_{\rm CO}=3.0\ M_{\odot}\\ and\ a\ He\ star\ with\\ M_{\rm He}=2.4\ M_{\odot},\ P_{\rm orb}=3.8\ {\rm hr} \end{array}$

 $\begin{array}{l} After \; first \; supernova \; ({\rm with} \\ {\rm kick} \; v_{\rm kick} \; = \; 300 \; {\rm km \; s^{-1}} \;): \\ M'_{\rm A} \; = \; 1.337 \; M_{\odot}, \\ M^0_{\;\rm He} \; = \; 2.4 \; M_{\odot}, \; P_{\rm orb} \; = \; 3.3 \; {\rm hr}, \\ e \; = \; 0.33, \; \Delta v^{\rm A}_{\rm sys} \; = \; 230 \; {\rm km \; s^{-1}} \end{array}$

Helium star mass transfer phase (+ spin-up of neutron star) leaving $M_{\rm A} = 1.338 M_{\odot}$, $M_{\rm He} = 1.559 M_{\odot}$, $P_{\rm orb} = 2.6 \,\rm hr$

 $\begin{array}{l} \mbox{Immediately after second} \\ \mbox{supernova: } M_{\rm A} = 1.338 \, M_{\odot}, \\ \mbox{M}_{\rm B} = 1.249 \, M_{\odot}, \, P_{\rm orb} = 3.3 \, {\rm hr}, \\ \mbox{e} = 0.12, \, \Delta v_{\rm sys}^{\rm B} = 35 \, {\rm km \, s^{-1}} \end{array}$

Case BB Mass transfer

- low-mass helium stars ($\leq 3.5 \, M_{\odot}$) expand drastically after helium core burning
- \rightarrow mass transfer from helium star to companion
- \rightarrow transformation into a CO star (Dewi, Pols)
- produces "normal" SNe Ic (e.g. prototype SN 94I had a progenitor $\lesssim 18\,M_\odot$ [Sauer])

Double Pulsar (PSR J0737-3039)

- $\bullet \ pulsar \ B \ (1.249 \ M_{\odot})$ formed in a faint SN Ib
- $\bullet~with~0.2-0.3\,M_{\odot}$ of ejecta

Habets (1986)

Binary Mergers

- one of the most important, but not well studied binary interactions
- BPS: ~ 10 % of all stars are expected to merge with a companion star \rightarrow 1 binary merger in the Galaxy every 10 yr!
- efficient conversion of orbital-angular momentum to spin orbital-angular momentum
- if mergers occur early in the evolution \rightarrow subsequent spin-down just as for single stars
- late mergers to affect the nearby CSM and pre-SN structure (e.g. case C mass transfer)
- note: case C mass transfer is more frequent at lower metallicity (Justham, PhP 2008)
- $\rightarrow~$ implications for GRB progenitors
- \rightarrow rapidly rotating core, short WR phase, circumstellar shell?

Systems with Massive Primaries $(8 M_{\odot} < M_{1}^{i} < 20 M_{\odot})$

Binary Evolution and the Final Fate of Massive Stars

Recent: binary evolution affects not only the envelope structure, but also the core evolution

- generically: after mass loss/accretion during an early evolutionary phase, a star behaves like a less/more massive star
- the core evolution is very different for stars that lose their hydrogen envelopes before helium ignition (no hydrogen burning shell during He core burning → no growth of the convective core) leading to smaller CO and finally smaller iron cores
 - \triangleright stars in binaries up to $\sim 60 \, M_{\odot}$ may end as neutron stars rather than as black holes (Brown, Lee, Heger, Langer)
 - $\triangleright \ black-formation \ without \ rotation \ \rightarrow \ faint \\ supernova?$

The Final Fates of Stars

• the effects of binary evolution

	single/wide binary	close binary
CO white dwarf	$< 7{ m M}_{\odot}$	$< 7-17{ m M}_{\odot}$
ONeMg white dwarf	$7-10\mathbf{M}_{\odot}$	$7-8{ m M}_{\odot}$
Neutron star:		
electron-capture	$\sim 10{ m M}_{\odot}$	$7/8-10{ m M}_{\odot}$
iron core collapse	$10-20/25{ m M}_{\odot}$	$10-50/60\mathrm{M}_\odot$
Black hole:		
$\mathbf{two-step}$	$20/25 - 40(?){ m M}_{\odot}$	$> 50/60{ m M}_{\odot}$
\mathbf{prompt}	$> 40{ m M}_{\odot}(?)$	
no remnant (Z?)	$> 140 \ { m M}_{\odot}$	

Note: (wide binary includes Case C mass transfer)

- the effects of metallicity
 - \triangleright affects mass loss and compactness \rightarrow supernova appearance (lower metallicity stars have less mass loss and are more compact)
 - b affects core evolution (e.g. importance of CNO burning) and final core structure
 - \triangleright example: the core structure of a $5\,M_\odot$ (Z=0.001) is similar to the core structure of a $7\,M_\odot$ (Z=0.02) star

LBV Supernovae from Massive Binary Mergers

Justham, Podsiadlowski & Vink (2012)

- large number of O-star binary mergers (Sana et al. [2012]: 20–30%)
- for sufficiently small core mass fraction
 - ▶ **He burning** in blue-supergiant phase
 - ▷ with relatively low-mass loss rate
 - b transition to the red only after He-core burning
 - \rightarrow possibility of SN explosion in LBV phase
 - (with various amounts of H envelope masses)

The collapsar model for long-duration

GRBs

- two-step black-hole formation: neutron star, accretion from massive disk \rightarrow black hole \rightarrow relativistic jet \rightarrow drills hole through remaining stellar envelope \rightarrow escaping jet \rightarrow GRB
- \bullet requires rapidly rotating He/CO star
- presently all hypernovae have been classified as SNe Ic (i.e., no H, He); only 1 in 100 Ib/Ic SNe are HNe
- HNe/GRBs are rare! $(10^{-5} \, \mathrm{yr}^{-1})$
- single star model: homogeneous evolution with low mass loss (Yoon & Langer; Heger & Woosley)
 - ▷ requires low metallicity (< 0.2 Z_☉)
 ▷ not consistent with observations?
- binary channels? (e.g. mergers of a He + CO core in common envelope [CE]; explosive CE ejection)

Merger Ideas

(from Fryer & Heger)

COLLAPSAR ENGINES FROM BINARY MERGERS

303

Explosive Common-Envelope Ejection Podsiadlowski, Ivanova, Justham & Rappaport (2010)

- discovered by Natasha Ivanova when studying the slow merger of massive stars
- spiralling secondary fills its Roche lobe inside common envelope (CE)
 - \rightarrow mass transfer from secondary to the core of the supergiant
 - \rightarrow H-rich stream penetrates helium core
- for large mass ratio:
 - \rightarrow sudden mixing of H into very hot layer (few 10⁸ K) \rightarrow nuclear runaway (hot CNO cycle)
 - \rightarrow rapid expansion of He layer and ultimate ejection of He-rich shell and rest of envelope

- energy source for CE ejection is nuclear energy (not orbital energy) → new CE ejection mechanism (application to short-period black-hole binaries, Nova Sco)
- works best for relatively low-mass companions ($\lesssim 3 \, \mathrm{M}_{\odot}$)

The Progenitor of SN 1987A Thomas Morris (Oxford/MPA), Ph.P.

SN 1987A: an anomalous supernova

- progenitor (SK $-69^{\circ}202$): blue supergiant with recent red-supergiant phase (10^4 yr)
- chemical anomalies:
 - ho helium-rich (He/H \sim 0.25, N/C \sim 5, N/O \sim 1)
 - CNO-processed material, helium dredge-up
 - \triangleright barium anomaly (5 10 solar)
- the triple-ring nebula
 - \rightarrow axi-symmetric, but highly non-spherical
 - \rightarrow signature of rapid rotation

The Triple-Ring Nebula

- discovered with NTT (Wampler et al. 1990)
- HST image (Burrows et al. 1995)
- not a limb-brightened hourglass, but physically distinct rings
- axi-symmetric, but highly non-spherical
 - \rightarrow signature of rapid rotation?
 - > not possible in simple single-star models (angular-momentum conservation!)
 - > supernova is at the centre, but outer rings are slightly displaced
 - \triangleright dynamical age: $\sim 20,000\,{
 m yr}$

all anomalies linked to a single event a few 10^4 yr ago, most likely the merger of two massive stars

Formation of the Triple-Ring Nebula Morris and Podsiadlowski (Science 2007)

- 3-dim SPH simulations (GADGET; Springel)
- simulate mass ejection during merger and subsequent blue-supergiant phase
- angular momentum of orbit \rightarrow spin-up of envelope
- $\rightarrow~$ flattened, disk-like envelope
 - energy deposition in rapid spiral-in phase ($\leq 1/3E_{\rm bind}$)
- \rightarrow partial envelope ejection \rightarrow outer rings, bipolar lobes
 - equatorial mass shedding during red-blue transition \rightarrow inner ring

The Diversity of SNe Ic (II)

- normal SNe Ic
 - $ho \, {
 m M_{MS}} \simeq 10 50/60 \, {
 m M}_{\odot}$ in close binaries
 - \triangleright case B (BB) mass transfer
- hypernovae/GRB supernovae
 - $hirac \mathrm{M_{MS}} \simeq 23 40/50\,\mathrm{M_{\odot}}$
 - b late case C mass transfer (explosive CE ejection?)
- faint SNe Ic (Ib?)
 - $\triangleright \, M_{MS} \gtrsim 23 \, M_{\odot}$
 - ▷ single, slowly rotating stars
- also at low Z: homogeneous evolution → rapidly rotating single stars → energetic SNe Ib/Ic (Yoon & Langer; Heger & Woosley)

Nomoto Fork Plot

