Formations of Compact Objects Mar. 7 2012 Waseda Univ.

Massive star formation in high-z and local universe

Kazu Omukai (Kyoto U.) Takashi Hosokawa (JPL, Caltech)

Outline

- I. Massive star formation in the local universe
 - Standard scenario of low-mass star formation
 - Obstacles in forming massive stars
 - Scenarios of massive star formation
 - Accretion evolution of high-mass protostellar objects
- II. Massive star formation in the high-z universe
 - Formation of First Stars in the universe
 - Low-metallicity Stars: transition of characteristic fragmentation mass
 - Super-massive Star Formation

Massive Stars in the Local Universe

In our Galaxy upper mass limit ~150M_{sun}

R136 in 30 Dor

In LMC (~Z_{sun}/3) ~300M_{sun} stars ?

Standard scenario of low-mass star formation

Established in 1980's

Shu, Adams & Lizano (1987)

A. Dense cores form within molecular clouds.

C. A stellar wind breaks out, creating a bipolar flow

$$\dot{M} \sim \frac{M_{\rm J}}{t_{ff}} = \frac{c_s^3}{G} \sim 2 \times 10^{-6} M_{\odot} / {\rm yr} \left(\frac{T}{10K}\right)^{3/2}$$

B. A protostar forms at the center of a core, growing in mass by accretion of ambient matter.

D. The infall terminates, revealing a newly formed star with a disk.

© NAOJ

CHST

Obstacles in Forming Massive Stars

1. Formation time problem Time needed to form a massive star

$$t_{acc} \equiv \frac{M_*}{\dot{M}_*}$$

exceeds the stellar life time.

2. Radiation barrier problem

Radiation pressure (on dust) by the star becomes too high for the matter val to be accreted.

Radiation pressure barrier direct stellar light at dust destruction front

Most of the stellar (opt., UV) photos are absorbed at a thin layer just outside the dusc destruction front, to which large radiation force is imparted.

Two scenarios for massive star formation

1. Large accretion rate (e.g., Nakano et al. 2000; McKee & Tan 2002)

Observationally of High mass protostellar objects

Infall motion (e.g., Sollins et al. 05, Beltran et al. 06)
 surrounding massive dense material (e.g., Osorio et al. 99, Kumar & Grave 08)
 large outflow rate (e.g., Beuther et al. 02, Zhang et al. 05)
 All consistently suggest high (>10⁻⁴M_☉/yr)accretion rate.

2. Stellar merger (e.g., Bonnel et al. 1998; Stahler et al. 2000)

Massive stars tend to be formed at the center of dense clusters. Mass segregation, gas drag make merger easier. But ,the threshold stellar density ~10⁶⁻⁸ stars/pc3 is too high.

Monolithic Collapse of Massive Core

Initial condition of massive star formation

Massive Molecular Core

radius:~0.1pc mass: ~ 10^{2-3} M $_{\odot}$ ~ 10^{2-3} M $_{I}$ line width:~1 km/s

Very massive, dense and turbulent.

```
c.f.) low-mass core
```

radius:~0.1pc mass: ~ 1 M_{\odot} ~ 1 M_{I} line-width: ~ 0.1 km/s

Alternative Scenario: Competitive Accretion

Fragments in to small pieces $M_{core} \sim M_{Jeans}$

Accretion from the entire cluster scale (~pc) at Bondi accretion rate

Another Radiation barrier

dust Eddington limit by re-radiated IR light

IR dust opacity

$$\kappa_{\rm IR}\simeq 8\left(\frac{Z}{Z_\odot}\right)~{\rm cm}^2/{\rm g}$$

Eddington limit for dust

$$L_{\rm Edd,IR} = \frac{4\pi cGM_*}{\kappa_{\rm IR}}$$

For accretion to continue:

$$L_{\rm tot} < L_{\rm Edd,IR}$$

Dust destruction front

Overcoming the dust Eddington limit

Cannot be overcome with spherical symmetry and ISM dust amount regardless of accretion rate.

Lower dust depletion (Wolfire & Cassinelli '86)

Non-spherical accretion (Nakano '89 etc.)

Zinnecker & Yorke(2007)

Protostellar evolution with rapid accretion

(Stahler et al. 1986)

Protostar hydrostatic Eq.s for Stellar Structure [shock/ photospheric condition] **ENVELOPE Stationary Accretion** radiative precursor(< R_{ph}) stationary hydro outer envelope $(>R_{ph})$ free fall

Protostellar evolution with different Accretion rate Mass-radius relation

With higher accretion rates,

The stars have larger radii before ZAMS.

The stars become more massive at the onset of H burning.

Collapse of Massive Molecular Core

Time (kyr)

3D RHD simulation Krumholz et al. '09

High accretion rate
Non-spherical accretion via disk
→the accretion continues
despite of strong radiation pressure.

Collapse of Massive Molecular Core & rapid protostellar accretion

- Accretion continues intermittetly despite the strong radiation pressure.
- Average accretion rate does not change so much.

60

Krumholz + (2009)

II. Low-metallicity Star formation

Metallicity and Massive Stars

 \succ Low-metallicity environment (Z<<Z_{\odot})

lower dust depletion
 ⇒ lower radiation pressure
 higher temperature
 ⇒ higher accretion rate

Weaker feedback More massive stars?

First Star Formation: early phase

•At ~ 10^4 cm⁻³, dense core of ~ $1000M_{sun}$ forms by H₂ cooling •Inside of it, a protostar forms at~ 10^{21} cm⁻³ with initial mass of ~ $10^{-2}M_{sun}$

Yoshida, KO, Hernquist 2008

Accretion evolution of the first star

Initial condition from the cosmological simulation
2D radiative-chemical hydro + protostellar evolution

Development of HII region

2D Radiation Hydro + protostellar evolution

HII region

•expands rapidly in the polar directions

 becomes wider and expels the gas (except in the shadow of the disk)

Disk photo-evaporation gas escapes in the polar directions with velocity of a few x 10 km/s

Accretion rate

 > accretion rate is drastically reduced by protostellar UV feedback.
 > the accretion terminates at 43 M_☉

Massive (but not very massive) star forms - ends its life as the core-collapse SN, instead of PISN

Pop III-II transition

✓ First stars (Pop III stars) theoretically predicted to be very massive(>100M_{sun}) ✓ Stars in the solar neighborhood (Pop I) typically low-mass(0.1-1M_{sun}) Low-mass Pop II stars exist in the halo.

transition of characteristic stellar mass in the early universe from very massive to low-mass (**Pop III-II transition**)
This transition is probably caused by accumulation of a certain amount of metals and dusts in ISM (**Critical metallicity**)

thermal evolution of low-metallicity clouds

1) Cooling by dust thermal emission: [M/H] > -52) H₂ formation on dust : [M/H] > -4

3) Cooling by fine-str. lines (C and O): [M/H] > -3

10⁶M_{sun} 10⁴M_{sun} 10²M_{sun} 1M_{sun} 10⁻²M_{sun} 10000 1000 dustinduced line induced 100 Z=0[M/H]=-6 10 . 10⁻⁴M_{sun} 1 Low-mass fragments 20 form by dust cooling

[M/H] := log₁₀(Z/Z_{sun})

1D hydro (spherical)
dust/metal ratio same as local ISM
all the important cooling processes inclluded
reduced H, D, C, O chemical network

KO et al. 2005; KO, Hosokawa, Yoshida 2010

Dust-induced fragmentation

Rapid cooling by dust at high density (n~10¹⁴cm⁻³) leads to core fragmentation. M_{frag} ~ 0.1 M_{sun}
With slight dust enrichment, characteristic stellar mass shifts to low-mass

Requirements for SMS formation by direct collapse

- Fragmentation suppressed
 - Rapid cooling → fragmentation
 Without such cooling → no fragmentation.
 - H₂ cooling is suppressed by FUV photodissociation, or by collisoinal dissociation.
- Formation timescale shorter than lifetime
 - High accretion rate
 >M*/t*~10⁵M^{sun}/2x10⁶yr ~0.05M^{sun}/yr
 - If no H₂, T~10⁴K
 dM*/dt ~c_s³/G~ 0.06M_{sun}/yr (T/10⁴K)^{3/2}

primordial gas with strong FUV field

✓J>J_{crit}

 \rightarrow isothermal collapse continues

SMS formation by the isothermal collapse

Bromm & Loeb 2003

✓M~10⁸M_{sun} halo virializing at z~10 (2σ over-density) with strong FUV J₂₁~4000
 ✓Fragmentation is inefficient
 →direct collapse to 10⁶M_{sun} supermassive star

Collisional dissociation by high-density shock in primordial gas

- shocks at >10³⁻⁴/cc, with> several 10³K
 - H₂ collisionally dissociated
 - Fragments at 8000K with >~10⁵M_{sun}
 - Isothermal collapse thereafter

Inayoshi & Omukai 2012

Possible sites of high-density shocks

Galaxy merger driven inflow
 (Mayer et al. 2010) ← probably metal-rich

Possible sites of high-density shocks

Cold-accretion-flow shock in the central ~10pc region of the first galaxy (Wise, Turk & Abel 2008)

Protostars with very rapid accretion

New evolutionary branch with higher rates of > 0.01 M_☉/yr
 The star continues to expand, never contracting to the ZAMS

- ➤ Unique mass-radius relation: R_{*}∝M_{*}^{0.5}, which is independent of mass accretion rates
- 7000R_{sun} = 300 AU @ 1000 M_{sun} : "supergiant" protostars

Physics of MR relation

$$L_* = 4\pi R_*^2 \sigma T_{\rm eff}^4$$

The stellar luminosity L_* is now close to the Eddington luminosity: $L_* \simeq L_{\rm Edd} \propto M_*$

Constant T_{eff} at 5000 K ← strong T-dependence of H- opacity (the Hayashi limit)

If T_{eff} takes the constant value, we get $R_* \propto M_*^{0.5}$

Most part of the stellar interior contracts, and central temperature increases H-burning begins at $700M_{\odot}$, but the star is still bloating (different from the ZAMS)

Evolution on the HR diagram

SUMMARY (1/3)

Massive Star Formation in Local Universe

Radiation pressure barriers

- •Not the scaled-up version of low-mass star formation
- •Can be overcome by rapid, non-

spherical accretion

Protostellar evolution with high accretion rate

- larger radius until ZAMS
- •later onset of H burning

SUMMARY (2/3)

First stars: massive (but not very massive)

- dense core of 10³M_{sun} forms at 10⁴cm⁻³ by the H₂ cooling
- Protostellar radiative feedback sets the final stellar mass at ~40Msun

Pop III-II transition by dust cooling

- Dust cooling causes a sudden temperature drop at high density where M_{Jeans}~0.1M_{sun}, which induces low-mass fragmentation.
- The critical metallicity for dust-induced fragmentation is [Z/H]_{cr}~-5

SUMMARY (3/3)

Supermassive star formation

- New Scenario for SMS formation: Collisional dissociation in dense, cold accretion shocks in the first galaxy suppresses H₂ cooling, leading to SMS formation via isothermal collapse at 8000K.
- Accretion of SMS can continue at least ~10³M_{sun}, probably more.
 Hopefully evolve to a SMBH seed.