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END FATES of MASSIVE STARS:
What type of supernova
from which type of star?

Single-star mass-loss
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Single-Star Evolution
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Single-Star Evolution

CLUMPING IN LINE-DRIVEN WINDS OF HOT STARS

Observational mass-loss rates come from Ha emission and IR/radio
free-free. Both are sensitive to p2.

If winds are highly clumped (F->>1) II‘ F - < P >

Then M from Ha and free-free is much lower.

Examples:

* Fullerton et al. (2006); factors of
10-20 reduction in Mdot.
* Bouret et al. (2005); factors of >3.
* Puls et al. (2006); median of 5,
but as much as 10x lower
* see also Crowther et al. 2003; Hillier
et al. 2003; Massa et al. 2003; Evans et al. 2004.
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Single-Star Evolution

(consequences of overestimated mass loss rates)

+ Evolutionary tracks for massive stars depend on adopted steady
mass loss rates (e.g., Maeder & Meynet 1994, 2000, 2003; Heger et al. 2003).

+ Problem: more recent modeling of spectra of O stars winds find

LOWER mass-loss rates than “standard” by factors of 3-10 or more.
(Factor of >3; Bouret et al. 2005; Factor of >10; Fullerton et al. 2005).

Why are O-star winds clumpy? See papers by Owocki & Rybicki

120 zero metallicity?
Smith & Owocki
M/Mg 2006
20




Single-Star Evolution

(consequences of overestimated mass loss rates)

+ Evolutionary tracks for massive stars depend on adopted steady
mass loss rates (e.g., Maeder & Meynet 1994, 2000, 2003; Heger et al. 2003).

+ Problem: more recent modeling of spectra of O stars winds find
LOWER mass-loss rates than “standard” by factors of 3-10 or more.
(Factor of >3; Bouret et al. 2005; Factor of >10; Fullerton et al. 2005).
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Why are O-star winds clumpy? See papers by Owocki & Rybicki
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Single-Star Evolution

SN Ib/c

[
»
",

.,

|2\ WR stars
: E B
5

about solar

@
3
L
E
£
S
L =
&
o
o
>
.
o
3
e
<
>
=
L
®
8
@
£

T low mass stars —— white dwarfs T
direct black hole

’ O/MNe/Mg core collapsej

l iron core collapse l

i BH by fallback l
(weak SN)

'

puls. pair (BH)

metal-free

T
34 40 60
initial mass (solar masses)

Heger et al. 2003 Note: adopted wind mass-loss
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Type:

SN subtype
fractions
II-P
ll-L
(Iin/lbn)
lib
Ib
Core-Collapse SN Fractions

Smith et al. (2011) Ic

MNRAS, 412, 1522

Large galaxies, roughly Zg

M determines SN type...



SN subtype
fractions

Core-Collapse SN Fractions

Smith et al. (2011)
MNRAS, 412, 1522

22 M,

WR stars

Initial Mass (Msun)

M determines SN type, due to:

€ Single star winds?
€ Single star eruptions?
@ Binary RLOF?



SN subtype
fractions

Core-Collapse SN Fractions

Smith et al. (2011)
MNRAS, 412, 1522

Binary #1

Ibc 267%

II-P
48.2%  II-L + IIb
17%

Initial Mass (Msun)

M determines SN type, due to:

€ Single star winds?
€ Single star eruptions?
@ Binary RLOF?



SN subtype
fractions

Core-Collapse SN Fractions

Smith et al. (2011)
MNRAS, 412, 1522

Binary #2
Ibc + IIb = 36.57%

23.6 M,

Initial Mass (Msun)

Type llb = binary (see Claeys et al. 2011)

M determines SN type, due to:

€ Single star winds?
€ Single star eruptions?
@ Binary RLOF?



SN subtype
fractions

Core-Collapse SN Fractions

Smith et al. (2011)
MNRAS, 412, 1522

Hybrid #1

Initial Mass (Msun)

M determines SN type, due to:

€ Single star winds?
€ Single star eruptions?
@ Binary RLOF?



CONSTRAINTS FROM SUPERNOVA PROGENITOR STARS

SN 2005g! (Gal-Yam & Leonard 2009)

Pre-explosion Supernova (ideally)
archival HST position Verify that candidate
images star disappears



CONSTRAINTS FROM SUPERNOVA PROGENITOR STARS

Type lI-P 2003ie
1999an
Red supergiants 2002hh

With initial mass 1999ev
1999br

1999em
2001du
(Smartt 2009, ARAA) 2004dj
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20060v
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2004A
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CONSTRAINTS FROM SUPERNOVA PROGENITOR STARS

Type II-P

Red supergiants
With initial mass
8.5-16.5 M

(Smartt 2009, ARAA)
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~18 Mg blue supergiant Minimum initial mass (M)
Progenitor (Arnett 1989)




CONSTRAINTS FROM SUPERNOVA PROGENITOR STARS

Circumstellar dust as a solution to the red supergiant
supernova progenitor problem

Joseph J. Walmswell *, John J. Eldridge

Institute of Astronomy, The Observatories, University of Cambridge, Madingley Road, Cambridge, CB3 0HA

August 2011

ABSTRACT

We investigate the red supergiant problem, the apparent dearth of Type IIP super-
nova progenitors with masses between 16 and 30 M. Although red supergiants with
masses in this range have been observed, none have been identified as progenitors in
pre—explosion images. We show that, by failing to take into account the additional ex-
tinction resulting from the dust produced in the red supergiant winds, the luminosity
of the most massive red supergiants at the end of their lives is underestimated. We
re-estimate the initial masses of all Type IIP progenitors for which observations exist
and analyse the resulting poBulat.ion. We find that the most likely maximum mass for
a Type IIP progenitor is ‘21f; M. This is in closer agreement with the limit predicted
from single star evolution models.

Key words: stars: evolution — supernovae: general — stars: supergiants

Type II-P ...including dust, perhaps initial masses are 8.5 — 20 M




CONSTRAINTS FROM SUPERNOVA PROGENITOR STARS

Wolf-Rayet population in Large Magellanic Cloud
Progenitor
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CONSTRAINTS FROM SUPERNOVA PROGENITOR STARS

Type II-P
RSGs with
initial mass

8.5 — 17/20 M, (20)

Type Ibc

WR? Zero detections.
Type lIb
SN 1993J - binary

SN 2011dh - binary
Cas A light echo

log F, [erg s lem™287"]

|
-
~
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SN Cas A
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CONSTRAINTS FROM SUPERNOVA PROGENITOR STARS

Type II-P
RSGs with

initial mass
8.5-17/20 Mg (20)

Type Ibc

WR? Zero detections.
Type lIb ;

13-15 M, binary? (2) | s SN 2008hd
Type II-L e o 0 e
M, ~ 18-25 Mg

SN 2008hd ... 20-25 M yellow supergiant

2 detections (Elias-Rosa et al. 2010)
so far...

SN 2009kr ... 18-24 M yellow supergiant
(Fraser et al. 2010; Elias-Rosa et al. 2010)



CONSTRAINTS FROM SUPERNOVA PROGENITOR STARS

Type II-P

RSGs with

initial mass

8.5 — 17/20 M, (20) SN 2010j]
Type Ibc |

WR? Zero detections. : ‘«M

S Nov 7 Keck/DEIMOS

Type lIb

13-15 Mg, binary (2) Nov 5 Keck/LRIS ?
Type lI-L SN 2006tf day 32

18-25 My (2)

4000 5000 6000 7000 8000 9000
Rest Wavelength (A)

Type lIn

Type lin
supernova progenitors?



Type IIn supernovae: .
: Smith et al.
Blast wave plows into 2007, 2008,

dense circumstellar matter. A
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see papers by N. Chugai et al. AVAVAVAVAV.a LUsl

Ha

€= Mg /(Mg + Mgy)

...need dense circumstellar gas within ~1000 AU of star.
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Example Light curves from SN/shell collisions
Simulations using ZEUS (van Marle et al. 2010)
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PROPERTIES OF SN2006gy’s CSM

A Massive LBV-like Shell: B
Clues from Spectral Evolution

Time evolution of narrow Ha z

(Smith et al. 2010, ApJ, 709, 856) s

£

* Narrow absorption gets weaker... SN2006gy i
Ha

...running out of CSM?
» Narrow absorption gets broader... .
...faster CSM at larger radii? ? s s
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PROPERTIES OF SN2006gy’s CSM

A Massive LBV-like Shell:
Clues from Spectral Evolution

Time evolution of narrow Ha
(Smith et al. 2010, ApJ, 709, 856)

years before
explosion -

* Narrow absorption gets weaker...
...running out of CSM?

» Narrow absorption gets broader...
...faster CSM at larger radii?

I

T
)
~%
o
)
(]
(o m
0
o
=
%)
=
fav]
(o N
<
€3]

ACH YN UEP S NSNS (NS (N SN ST S NS ST S R S S

0 2 4 6 8 10 12
Radius (10" cm)

4-5000 km/s

Hubble Flow at 150-500 km/s

Suggests =10*° erqg ejection
~8 yr before SN (fall 1998)

Narrowo. Int;  Broad



SN 2005g|

Moderate Luminosity Type lIn supernova: Narrow H lines

Progenitor star was very Luminous: M, =-10.3 orL=1.1x10° L
Implies M ays = 50 Mg

Progenitor mass-loss rate about 0.03 Mg/yr: like P Cyg in 1600 AD

The progenitor star of SN 2005gl vanished after the supernova event.

Gal-Yam & Leonard Nature (2009)



Minor tangent...
SN 1 961 V “SN impostors” or Luminous Blue Variables
(see Smith et al. 2011, MNRAS, 415, 773)
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Minor tangent...
SN 1 961 V “SN impostors” or Luminous Blue Variables
(see Smith et al. 2011, MNRAS, 415, 773)

Originally assumed to be a “SN impostor”: Luminous Blue Variable

Progenitor star was extremely luminous: M,, = -12
Implies M, s = 100 Mg - like Eta Car

LBVs
SN II-P+II-L /2
SN IIn

—14 -16 0 1 2 3 4
peak absolute mag Expansion Speed (10% km s™)

5




Minor tangent...
SN 1 961 V “SN impostors” or Luminous Blue Variables
(see Smith et al. 2011, MNRAS, 415, 773)

Originally assumed to be a “SN impostor”: Luminous Blue Variable

Progenitor star was extremely luminous: M, = -12
Implies M, s = 100 Mg - like Eta Car

LBVs %
CNT TH_DLIT_T /9

These observed properties suggest that SN 1961V was actually a
core-collapse SN of Type lin.

Independently, Kochanek et al. (2010) have argued based on Spitzer
upper limits to any present-day IR source that the star did not survive...

...90 SN161V was a Type lIn core-collapse SN for which we have detection
of a very massive progenitor star and possibly a pre-SN outburst.

-10 -12 -14 -16 -18
peak absolute mag Expansion Speed (10% km s™)




SN 2010jl

Very luminous Type lIn supernova: HST images from 10 yr ago

SN 2010jl

Nov 7 Keck/DEIMOS

Nov 5 Keck/LRIS

2006tf day 32

4000

2000

6000
Rest Wavelength (A)




SN 2010jl (a.k.a.

Very luminous Type lIn supernova (-20.something)
Bright blue source at SN position: Mgz5qw = -12
(either massive young cluster or very luminous progenitor star)

Implies Muys = 30 Mg

Smith et al. (2011)



SN 2010jl (a.k.a.

Very luminous Type lIn supernova (-2
Bright blue source at SN position: M.
(either massive young cluster or ver

Implies Mzays = 30 Mg

log F, (107'8 ergs s”lem™A™)

Cluster only

3 Myr

" w500 K

4000
Wavelength (A)

Smith et al. (2011)




CONSTRAINTS FROM SUPERNOVA PROGENITOR STARS

Type II-P Typelln
RSGs with supernovae progenitors:
initial mass
8.5 — 20 M (20) summary
Type Ibc * Very luminous SNe lIn require high mass of CSM

- some require >10 Mg ejected in decade
before core collapse.

- high eruptive mass-loss rates resemble
LBVs, suggesting M, > 25 M

WR? Zero detections.

Type lIb
13-15 M, binary (1)

* Velocities and densities of CSM resemble LBVs

Type lI-L
18-25 My (2) : :
- 3 detections of SN progenitors (or host cluster)
Type lIn - SN 20059l M, ~ 60 M,

- SN 1961V M, ~ 100 M
- SN 2010jI M, > 30 Mg (cluster or progenitor)

Suggests that Type lin supernovae
come from very massive stars M, > 25 M4



CONSTRAINTS FROM SUPERNOVA PROGENITOR STARS

Smith et al. (2011)
MNRAS, 412, 1522

22 M,

Ty p e I I e P Core-Collapse SN Fractions W R Sta rs

RSGs with
initial mass

8.5 — 20 M, (20)

Type Ibc

Zero detections.

10 lI-P 1I-L
Type lib Initial Mass (Msun)
13-18 Mg binary (2)

Type lI-L
18-25 My (2) Steady winds do not dominate the H envelope
removal of massive stars.
Type lIn
!zps M, (3+) Assuming that ALL massive stars explode as visible SNe...

(including quiet collapse to black holes makes agreement worse)



CONSTRAINTS FROM SUPERNOVA PROGENITOR STARS

Smith et al. (2011)
MNRAS, 412, 1522

Type lI-P
RSGs with
initial mass

8.5 — 20 M, (20)

Type Ibc

Zero detections.

Type lIb
13-15 Mg binary (2)

Type lI-L
18-25 My (2)

Type lIn
>25 Mg (3+)

Core-Collapse SN Fractions

/////

1
Mass-transfor stroam
(b) Semidetached binary

Binary #2
Ibc + IIb = 36.57%

23.6 M,

10 [I-P1I-L

Initial Mass (Msun)

More consistent with low
ejecta masses in SNe Ibc

Dessart et al. 2011
Hachinger et al. 2012

(more than 0.1-0.2 M, of He
is easily seen in SNe Ic)




CONSTRAINTS FROM SUPERNOVA PROGENITOR STARS

Smith et al. (2011)
MNRAS, 412, 1522

Hybrid #1

Type II-P Core-Collapse SN Fractions
RSGs with
initial mass

8.5 — 20 M, (20)

Type Ibc

Zero detections.

10 lI-P 1I-L
Type b Initial Mass (Msun)
13-18 Mg binary (2)

Type lI-L
18-25 My (2)

SNe Ibc preferentially associated with clusters?
Type lIn

>25 My (3+)



Type lIn
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CONCLUSIONS/DISCUSSION TOPICS

1. Observed fraction of Type Ibc is too high to be explained by massive
single WR star progenitors.
Only the most massive stars (> 40-50 M) can shed H envelopes
via winds and/or eruptions, but these are too rare for all SNe Ibc.

2. Instead, stripped-envelope SNe (Types Ib, Ic, llb) may be dominated by
close binaries, so RLOF may dominate removal of H envelope in general.
Which SNe lib, Ib, Ic come from the lower mass range?

What fraction of classical WR stars form this way?

3. Metallicity and cluster membership can still play an important role:
Star formation (binaries), mass loss after RLOF, lIb/Ib/Ic ratio, etc.
...GRBs? Quiet collapse to BH?

4. What about mass-gainers in RLOF systems?
Some might still be there after SN — are they detectable?
also, Rapid/critical rotation, thermal instability, high luminosity?



