

Fermi observations of Galactic sources

Takeshi Nakamori (Waseda U) on behalf of the Fermi LAT collaboration

Formations of Compact Objects: from the cradle to the grave

Waseda University, Mar 9 2012

- Introduction
- Hunting unassociated sources
 –MW follow-ups by Waseda team
- SNRs with Fermi
 - -Young SNRs
 - -Interaction with MCs
- Summary

Fermi ! 2008 Jun 11 11:45 EDT Launched by Delta-II from Cape Canaveral Air Force Station

Altitude 550 km
 Inclination 25.7°
 orbital period 95 min

Pair conversion telescope

■Tracker : silicon strip detector → gamma-ray direction

■Calorimeter : Csl(Tl) → gamma-ray energy

■Anticoincidence shield

 → background rejection

 20 MeV – 300 GeV

 Large FoV (2.4 str)
 All sky survey every 3 hours

Photon Direction: Silicon strip Tracker GBM Background rejection: Anti-coincidence Detectors

LAT

Energy: Calorimeter

- Data are promptly public
- Dataset and response updated in 2011 (Pass7)
 - Improved effective area in low energies
 - In-orbit calibration of PSF

Integral sensitivity for 1 year (E > 10 GeV) : ~ 0.05 Crab (Atwood+09)

EGRET all sky

EGRET All-Sky Gamma-Ray Survey (> 100MeV) Credit: EGRET team

Fermi 2 years

Credit: NASA/DOE/International LAT Team

2FGL catalog

• 1873 source (> 4σ significance)

arXiv:1108.1435

Abdo+, ApJS submitted

http://www.nasa.gov/externalflash/fermipulsar/

Credit: NASA/Goddard Space Flight Cente

Selection Criteria

- Unassociated objects
- •More than 10 degrees away from the galactic plane
- •High significance >> 10 σ

Maeda+ 11 Takahashi+12

1st Year Results

Samma-ray

2nd year results

Space Telescope

Flux ratio population

- Clear separation between blazars and MSPs
- Can be a good indicator of source classes

Gamma-ray Space Telescope

Most of our targets are predicted to be MSPs

Gamma-ray Space Telescope 3rd year "hot" results

- Will be presented at the upcoming ASJ meeting
- Papers are also in preparation

MW observations of 1FGL J2339.7-0531 – a candidate of black-widow like pulsar (Takahashi+, Yatsu+)

See also Kong+12, ApJL, 747, 3

Systematic X-ray study of Fermi unassociated sources at high Galactic latitudes (Maeda+)

Selection Criteria

•Unassociated objects •Less than 10 degrees away from the galactic plane •High significance >> 10 σ

TN+11, Fermi Symposium

1FGL J1018.6-5856

Space Telescope

New gamma-ray binary

Space Telescope

Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6–5856

The Fermi LAT Collaboration*

Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6–5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V(IIV) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6–5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

photons cm⁻² s⁻¹, making it one of the brighter LAT sources. The source's location at right ascension (R.A.) = 10^h 18.7^m, declination (decl.) = -8^s 65.30' (2000) : ±1.8', 95% uncertainty) means that it lies close to the galactic plane ($b = -1.7^{\circ}$), marking it as a good candidate for a binary system. IFGL 1018.6-5858 has been noted to be positionally coincident with the supernova remnant G284.3–1.8 (*I*2) and the TeV source HESS J1018–5898 (*I*4), although it has not been shown that these sources are actually related.

RFPORT

The modulation at a period of 16.6 days has a power more than 25 times the mean value of the power spectrum and has a false-alarm probability of 3×10^{-8} , taking into account the number of statistically independent frequency bins. From both the power spectrum itself (15) and form 60th do. Both sums and balance accord

CA:R.Corbet, Science, 335, 189 (2012)

Swift/XRT

Swift/UVOT

16.6 days period Companion O6V star

IFGLJ1839.1-0543C

Blackbody (0.07keV) + power-law ~ 2.3

FGLJ1839 1 05430 Swift/UVOT (B2) Yet perior mag. 20.78 +/- 0.16

pulsar candidate ?

Yet periodicity has not been identified in any WL

TN+11, Fermi Symposium

Fermi LAT detection of SNRs

16 SNRs including –4 young SNRs9 interacting with MC

+ 43 2FGL candidates

Cosmic ray origin

- Cosmic rays
 - energy density 1 eV/cc
 - averaged confinement time 2E+7 yrs (1E+14 s)
 - Galactic disc : 30 kpc × 300 pc
 - 1E+40 erg/s
- Supernovae
 - 1E+51erg
 - 1 SN/30 yrs
 - 1E+42 erg/s

a few % of SNe are enough

Promissing candidate

Discovery of an electron-accelerating SNR (Koyama+95) Inner region: thermal emission from ejecta Outer shell : synchrotron emission = e- up to 100 TeV Accl. sites are very thin filaments at the shell (Bamba+03) Common in young SNRs

RX J1713-3946, RX J0852-4622, Cas A, RCW 86, etc. etc.

RX J1713.7-3946

- Age ~ 1600 yrs, D ~ 1 kpc
- 2nd example of SN1006
 - Non-thermal X-ray dominated (Koyama+96)
- Detection of VHE gamma-rays
 CANGAROO, H.E.S.S.
- Morphologies are quite similar between X-ray and VHE, supporting leptonic scenario

Space Telescope

Arguments

Variation in ~1yr time scale → Need > 1mG ! (locally) → Protons produce TeV gamma-rays ?

Suzaku would have detected thermal emission in the hadronic case

Energy [keV]

- Age 1700-4300 yrs
- **D** ~ **750 pc** (further than Vela SNR)
- R ~ 1 degree
- Discovered in *ROSAT* hard image
- Non-thermal X-rays
 - filamentary structure with XMM
- Detection of VHE gamma rays
 - CANGAROO, H.E.S.S.

Hard spectrum : Γ = 1.87 ± 0.08 (stat) ± 0.17 (sys) Hadronic model :

a large amount of protons (5E+50 erg for n = 0.1 /cc) **Leptonic model** :

weak magnetic field (12uG) against X-ray filaments

Mid-aged SNR + MC : W44 Dermi

Gamma-ray Space Telescope

- Age 20000 yrs
- D ~ 3 kpc •
- 35'x26' •

Abdo+10

- **Cloud-shell interactions** •
 - CO
 - OH maser
 - Mid-IR (shocked H2)

- LAT detection •
 - **Extended** emission
 - **Ring-like morphology**
 - PSR B1853 negligible

W44 spectrum

Spectral break/steepening around a few GeV Hadronic model : works well Leptonic model :

- bremsstrahlung can't reproduce radio
- IC requires 1E+51 erg electrons

W51C

- Age 30000 yrs
- D ~ 6 kpc

Spectral steepening Hadronic model : works well Leptonic model : not favored as well as W44

Origin of spectral steepening

Samma-ray Gamma-ray pace Telescope

Possible explanations:

- 1. CR diffusion to dense clouds : Runaway CRs (e.g., Ohira+10)
- Re-acceleration at a radiative cloud shock with wave damping due to strong ion-neutral collisions : Crushed cloud model (Uchiyama+10).
- 3. Further accelerations at multiple reflected shocks (Inoue+10)

Studying SNRs with large apparent sizes can help to disentangle the origin of the spectral features from the difference of gamma-ray bright regions among the models

Runaway CR model

Samma-ray

Works well, but do they fully explain radio brightness ?

W28 could be the case

Abdo+11

Space Telescope

Southern excess correlates not with the radio shell but with MC Though we don't know whether the distance is consistent

Crushed Cloud Model

Space Telescope

Uchiyama+10

Re-acceleration of Galactic cosmic-rays at cloud shocks explains both radio and gamma-ray fluxes GeV break may be related to Alfven wave evanescense

Cygnus Loop

- R ~ 1.5 degree
- **No MC correlation**
- **Offset from the Galactic plain**

0 0

0 6

0

Dermi Gamma-ray Space Telescope

Space Telescope

Katagiri+11

Spectral steepening as well Hadronic model : interaction with ISM (n ~ 5 /cc) naturally reproduce the observatons Leptonic model : IC requires n~0.02 and B~2 uG

Katagiri+11

- Correspondence among gamma rays, H alpha and X-rays
 - CRs responsible for gamma-ray emission are localized near the acceleration site
- Lack of association with dense MCs
 - CRs are localized near the acceleration sites without significant diffusion
 - Runaway model excluded by morphology
 - Multiple reflected shock model (Inoue+11) might operate since such shocks observed in X/Opt despite dense MC
 - Crushed cloud model may work, though expected fillamental structure is not resolved in gamma-rays

Spectra comparison

Space Telescope

Space Telescope

	Fermi-detected SNRs	Index ¹	Index 2	E _{Break} (GeV)	Age (yrs)
Probable Molecular Cloud Interaction Young	Casssiopeia A	-2.1 ±0.1	-2.4 ± 0.2**	>100	330
	Tycho	-2.3 ± 0.1	$-2.0 \pm 0.5^{**}$		438
	Vela Jr.	-1.9 ± 0.2	-2.1 ± 0.2**		680
	RX J1713	-1.5 ± 0.1	-2.2 ± 0.1**		1600
	Puppis A	-2.0 ± 0.1			3700
	W49B	-2.18 ± 0.04	-2.9 ± 0.2	4.8 ± 1.6	1k-4k
	CTB 37A	-2.28 ± 0.1	-2.3 ± 0.3**		1500?
	3C391	-2.35 ± 0.16			7k
	G349.7+0.2	-2.0 ± 0.1			14k
	Cygnus Loop	-1.83 ± 0.06	-3.23 ± 0.2	2.4 ± 0.3	20k
	IC 443	-1.93 ± 0.03	-2.56 ± 0.1	3.3 ± 0.6	3-4k or 20-30k
	W30	-2.1 ± 0.1	-2.7 ± 0.1	2.4 ± 1.2	25k
	W44	-2.1 ± 0.1	-3.0 ± 0.2	1.9 ± 0.5	20-40k
	W51C	-1.97 ± 0.08	-2.44 ± 0.09	1.9 ± 0.2	~30k
	S147	-1.4 ± 0.5	-2.5 ± 0.2	1.8 ± 0.8	30k
	W28 (N) (and G6.5-0.4)	-2.09 ± 0.36	-2.74 ± 0.15	1.0 ± 0.2	35-150k (40k)

¹ for Power Law or i₁ for Broken Power Law ** from VHE measurement

Middle-aged

T. Brandt

Summary

- Fermi LAT is operating well over 3 years
- 30% of 2FGL catalog sources remain their nature uncertain
- MW observations is really a powerful tool to probe such objects
 - Several interesting sources do exist !
- LAT has identified 16 SNRs
 - LAT observation triggered theoretical studies
 - "Spectral shape" is not enough
- Pion bump should critically constrain the modelings.
 - We'll soon explore E<100 MeV with reliable analysis.