Hydrodynamical Models of Core-Collapse Supernovae

Melina Cecilia Bersten

Credit: NASA/Phillip Newman

Supernova diversity

- Final stages of stellar evolution
- Type IIb-Ib-Ic: Stripped envelope SNe WR pre-SN structures
- Broad line Ic ($v \sim 30000$ km s⁻¹) connected to LGRBs
- Which type of progenitor correspond to each subtype of CCSNe? Single or binary scenario?

Progenitor info

- Pre-explosion images
- Environmental & metallicity studies
- SN rates
- Mass-loss rates from radio & X-rays
- Hydrodynamic modeling: light curve (LC) + expansion velocity

Progenitor info

- Pre-explosion images
- Environmental & metallicity studies
- SN rates
- Mass-loss rates from radio & X-rays
- Hydrodynamic modeling: light curve (LC) + expansion velocity

Morphology of the LCs related to

 $M_{
m ej},\,R$, $E_{
m exp}$ and $M_{
m Ni}$

Hydrodynamical model

- One-dimensional Lagrangian code with flux-limited radiation diffusion and gray transfer for gamma-rays (Bersten et al 2011)
- Pre-SN model: Wolf-Rayet stars with different He core mass from single stellar evolutionary calculations (Nomoto et al)
 - SNe Ib \Longrightarrow He star
 - SNe IIb \implies He star + thin H envelope ($M \leq 0.1 M_{\odot}$)

- Cooling phase with strong dependence on progenitor radius
- Second peak powered by radioactive decay Depends on E_{exp} , M_{ej} , M_{Ni} and ⁵⁶Ni distribution

- Cooling phase with strong dependence on progenitor radius
- Second peak powered by radioactive decay Depends on E_{exp} , M_{ej} , M_{Ni} and ⁵⁶Ni distribution

- Cooling phase with strong dependence on progenitor radius
- Second peak powered by radioactive decay Depends on E_{exp} , M_{ej} , M_{Ni} and ⁵⁶Ni distribution

- Cooling phase with strong dependence on progenitor radius
- Second peak powered by radioactive decay Depends on E_{exp} , M_{ej} , M_{Ni} and ⁵⁶Ni distribution

- Cooling phase with strong dependence on progenitor radius
- Second peak powered by radioactive decay Depends on E_{exp} , M_{ej} , M_{Ni} and ⁵⁶Ni distribution
- A handful of SNe observed during cooling phase, e.g. SN 2008D and SN 2011dh

SN 2008D

- Initial broad spectral lines as in Type Ic-bl
- \blacksquare Development of He lines \longrightarrow transition to Type Ib
- Associated weak X-ray flash (XRF)
- No GRB found
- Early UV/optical observations
- Light Curve (LC) shows two peaks

Hydro-model of SN 2008D

- Same model and physical parameters as Tanaka et al. 2009 (T09): He core of 8 M_{\odot} , $R = 1.4 R_{\odot}$, $E_K = 8.4$ foe, and $M_{Ni} = 0.07 M_{\odot}$ (He8)
- Good agreement between models

Progenitor radius

- We tested envelopes of different radii attached to the He8 model.
- Models with larger radius cannot reproduce the early LC either

Optimal model

- He8 model with 0.01 M_{\odot} of ⁵⁶Ni in the outermost layers
- This material may have been carried by a jet, as suggested by spectropolarimetry (Maund et al. 2009).

SN 2011dh

- Type IIb: first H lines, then He
- Third brigthest SN of 2011 $(V \approx 12 \text{ mag})$
- Discovered in M51 ($d \sim 8$ Mpc; other two SNe: SN 1994I and 2005cs)

Credit: Stephane Bailey

- Strong constraint of the explosion time whitin 0.6 days
- HST pre-SN images \implies YSG star with $R \sim 270 R_{\odot}$ at SN position
- Controversy about YSG star: progenitor, binary companion, or unrelated object?

Progenitor of SN 2011dh

- HST pre-SN photometry + evolutionary tracks
 - Maund et al. (2011) found $M_{\rm ZAMS} = 13 \pm 3 M_{\odot}$
 - Van Dyk et al. (2011) found $M_{\rm ZAMS} = 18 21 M_{\odot}$
- Stellar population analysis are in favor of lower mass estimation (Murphy et al. 2011)
- But Arcavi et al. (2011) and Soderberg et al. (2011) suggested a compact progenitor (~1 R_{\odot}) based on radio and early LC properties

Hydro-model of SN 2011dh

• Optimal model: He core mass $\approx 4 M_{\odot}$ ($M_{\rm ZAMS} = 12 - 15 M_{\odot}$), $E_{\rm exp} = 8 \times 10^{50}$ erg, and $M_{\rm Ni} = 0.063 M_{\odot}$

Hydro-model of SN 2011dh

- Optimal model: He core mass ~ 4 M_{\odot} ($M_{\rm ZAMS} = 12 15 M_{\odot}$), $E_{\rm exp} = 8 \times 10^{50}$ erg and $M_{\rm Ni} = 0.063 M_{\odot}$
- \checkmark He core mass \gtrsim 8 M_{\odot} ($M_{\rm ZAMS} \gtrsim$ 25 M_{\odot}) is ruled out

- \blacksquare He core of $4 M_{\odot}$ (He4) with $R = 2 R_{\odot}$
- He4 model with an attached envelope (He4R270) for $T_{\rm eff}$ and L consistent with pre-SN images $\implies R = 270 R_{\odot}$

- He core of $4 M_{\odot}$ (He4) with $R = 2 R_{\odot}$
- He4 model with an attached envelope (He4R270) for $T_{\rm eff}$ and L consistent with pre-SN images $\implies R = 270 R_{\odot}$
- Compact model cannot reproduce the early spike shown in the observations

- We tested envelopes with different radii attached to the He4 model.
- \blacksquare Models with $R \gtrsim 150 R_{\odot}$ are required

- Almost no differences in T_{eff} for $t \gtrsim 2$ days
- Image: $T_{\rm eff} \approx 8000$ K at t = 2.4 days compatible with temperature from spectrum (cyan dot; Arcavi et al 2012)
- Analytic models by Rabinak & Waxman (2011) => strong dependence on radius
 Effective temperature

Single vs binary Scenario

- Single, massive (\gtrsim 25 M_{\odot}) Wolf-Rayet stars with strong winds → He core mass \gtrsim 8 M_{\odot}
- He stars in interacting binaries

Single vs binary Scenario

- Single, massive ($\gtrsim 25 M_{\odot}$) Wolf-Rayet stars with strong winds He core mass $\gtrsim 8 M_{\odot}$ ruled out in our models
- - Primary star of $16 M_{\odot}$ and period of 100 days
 - Secondary star of $10 14 M_{\odot}$
 - Conservative and non-conservative mass accretion

• Primary ends as YSG with He core mass of $\approx 4 M_{\odot}$ and H mass of $\approx 5 \times 10^{-3} M_{\odot}$

Binary stellar evolution for SN 2011dh

- 16 M_{\odot} + 10 M_{\odot} with P = 100 days
- Primary ends as YSG with He core mass of $\approx 4 M_{\odot}$ and H mass of $\approx 5 \times 10^{-3} M_{\odot}$

Summary

SN 2008D:

- Early behavior incompatible with cooling phase of WR star even for larger initial radius
- Good fit to early LC assuming $\approx 0.01 M_{\odot}$ of ⁵⁶Ni in the outer ejecta. This type of ⁵⁶Ni distribution may indicate the presence of jets.

SN 2011dh:

- Models with He core mass of ≈ 4 M_☉ ($M_{\rm ZAMS} \approx 15 M_{\odot}$), $E_{\rm exp} \approx 8 \times 10^{50}$ erg and $M_{\rm Ni} \approx 0.063 M_{\odot}$ reproduce very well the observations
- Large $R \sim 200 R_{\odot}$, consistent with the pre-SN imaging, required to reprocude the early LC. No contradiction with the temperature
- He core mass \gtrsim 8 M_{\odot} ($M_{\rm ZAMS} \gtrsim$ 25 M_{\odot}) ruled out \implies single star evolution unlikely
- Binary models give right position on HR diagram, and mass of H for a SN IIb \implies YSG may be the progenitor

Comparison with analytic models

Models for early emission by Chevalier & Fransson (2008) (CF08), and Rabinak & Waxman (2011) (RW11): (1) constant opacity, and (2) $\rho \propto r^{-n}$ valid while the photosphere is in the outer shock-accelerated part of the ejecta.

Optimal Model

- He8 model with 0.01 M_{\odot} of ⁵⁶Ni in the outermost layers
- This material may have been carried by a jet as suggested by spectropolarimetry (Maund et al. 2009).

Double-peaked ⁵⁶Ni **Distributions**

- ⁵⁶Ni in the outermost layers produces an effect in the early light curve
- Depends on the amount and distribution

