Gravitational waves from the Papaloizou-Pringle instability in black hole-torus systems

Kenta Kiuchi (YITP) with Masaru Shibata (YITP), Pedro J. Montero (MPA), José A. Font (Valencia Univ.)

Ref.) PRL 106 251102 (2011)

<u>Outline</u>

- 1. Introduction and formation of black hole-torus systems
- 2. Instabilities in black hole-torus systems
 - 2.1 Runaway instability (Axisymmetric mode)
 - 2.2 Papaloizou-Pringle instability (Non-Axisymmetric mode)
- Gravitational waves associated with the instabilities
 Summary

0. Introduction

- <u>Numerical Relativity</u> = Solving Einstein eqs. + (magneto) hydrodynamics (+ radiation field) to explore extreme physics
- Experiments of high energy phenomena on computers
- Theoretical prediction of gravitational waves (LCGT(KAGRA) project)

1. Formation of black hole-torus systems Gamma Ray Burst

1. Formation of black hole-torus systems <u>Death of massive stars (Sekiguchi san's talk</u>)

Density on meridional plane

 $M_{\rm BH}$ / $M_{\rm torus}$ evolution (Sekiguchi & Shibata11)

Courtesy to Y. Sekiguchi

Torus mass / Black hole mass ~ O(0.01)but, strongly depend on the rotation

1. Formation of black hole-torus systems <u>Merger of compact binary</u>

NS-NS merger (Kiuchi+10, Hotokezaka+11)

15 H4-27, Time=36.5ms H4-27, Time=29.4ms 20 20 $0 \lesssim {\rm M_{torus}} \, / \, {\rm M_{BH}} \lesssim 0.07$ 14 10 10 y [km] 13 [km] 0 • $M_{torus} / M_{BH} \land$ for the long-lived 12 -10 hyper massive neutron stars -10 11 -20 -20 10 20-20 10 -10 -20 -10 10 20 0 x [km] M_{BH}/M_{NS} x [km] BH-NS merger (Kyutoku+11) M_{torus} / M_{BH} $\sim O(0.1)$ BH spin a=0.75 t=109.7051 μs Torus mass / Msolar 0.4 60 16 Q=2 Ж 0.35 40 15 0.3 M_{r>rAH} [Mo] 20 [<u>백</u> ^-20 0.25 14 Ж 0.2 13 0.15 0.1 ж 12 -40 0.05 -60 11 n -60 -40 -20 40 60 20 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 M_{NS}/R_{NS} x [km] Compactness

1. Formation of black hole-torus systems

Supermassive star collapse (Shibata & Shapiro (02))

- \bullet Super massive star is modeled with $\Gamma{=}4/3$
- Uniform rotation

Density on meridional plane

In any case, there is possibility to produce a massive torus.

2. Instabilities in black hole-torus systems

- BH-torus systems as a central engine of GRB Proposed mechanism for lunching relativistic jets
 - Neutrino-antineutrino annihilation (Popham+ 99)
- Blandford-Znajeck mechanism (Blandford-Znajeck 77)
 Basic assumption on both scenarios : BH-torus systems survive for a sufficiently long time

Objection : Dynamical instabilities associated with BH-torus systems

- BH-torus systems as a consequence of SMS collapse
- Less observational constraint

Once the instabilities emerge, gravitational waves are emitted \Rightarrow Verification of SMBH formation process

2. Instabilities in black hole-torus systems

The dynamical instabilities

- Runaway instability (Abramowicz+83)
- Paparouizou-Pringle instability (Paparouizou-Pringle 84)

2. Instabilities in black hole-torus systems

Elements for favoring/disfavoring Runaway instability

- favor : Self gravity of tori (Nishida+ 96)
- disfavor : GR effect, specific angular momentum profile, BH rotation (Abramowicz+ 98, Wilson 84)

Comprehensive study by Montero (Montero+10) • Axisymmetric Numerical Relativity simulation

Mass accretion rate

- Stable mass accretion for several dynamical timescales
- No runway instability for the wideclass of BH-torus systems

2. Instabilities in black hole-torus systems <u>Papaloizou-Pringle instability</u>

- + Low m mode is most unstable ($\delta Q^{\rm cc}~e^{~im\phi}$)
- Angular momentum transport through the corotation point

Numerical simulations

- Zurek & Bentz 86 : Newtonian
- Blaes & Hawley 88, Hawley 91 : Schwartzschild spacetime
- Villiers & Hawley 02 : Kerr spacetime
- Korobkin+ 10 : Numerical Relativity

3. Result

Model : BH+torus systems in equilibrium (Shibata 07)

Model	Ang. Mom.	Mass ratio (torus/BH)	Simulation time / P _{orb}
C1	Constant	0.1	34
C 06	Constant	0.06	40
NC1	Non-constant	0.1	41
NC06	Non-constant	0.06	34

- Tori are modeled with Γ -law with Γ =4/3
- Non-constant angular momentum profile $\propto r^{\alpha}$ ($0 \le \alpha \le 0.5$)
- Long-term simulation to explore a saturation of the instability
- Numerical Relativity simulation in 3D

3. Emergence of the instability

Density contour on the equatorial plane

C06

Time is given in the units of the orbital Period

3. Emergence of the instability

Density contour @ the saturation

Both models are unstable : the "planet" is left

3. Mode and angular momentum transport

3. Gravitational waves <u>GW spectrum</u>

Verification of a central engine of GRB

• Largest amplitudes along the rotation axis (Jet direction ?) c.f. zero amplitude along the rotation axis if axisymmetry

Verification of SMBH formation

4. Summary

- BH-torus systems: Subject to Papaloizou-Pringle instability
- Growth of non-axisymmetric structure
- Strong emitters of GWs
- Exploring the hypothesis of GRB central engine
- Verification of SMBH formation process

<u>Future work</u>

- More sophisticated models of BH-torus systems
- 3D NR collapse simulation implementing the finite temperature EOS and neutrino cooling / heating (with Y. Sekiugchi and M. Shibata)