New equations of state in simulations of core-collapse supernovae

Matthias Hempel, Basel University Waseda, 8.3.2012

in collaboration with:

Tobias Fischer (GSI Darmstadt) Roger Käppeli (Zürich) Matthias Liebendörfer (Basel) Jürgen Schaffner-Bielich (Heidelberg)

CSCS

HP2C High Performance and High Productivity Computing

New equations of state in simulations of core-collapse supernovae

Outline:

- 1.) introduction
- 2.) EOS model & constraints
- 3.) EOS aspects in simulations
 - a.) sub-saturation densities
 - b.) supra-saturation densities
- 4.) conclusions

Introduction

- EOS provides the crucial nuclear physics input for astrophysical simulations: thermodynamic quantities and nuclear composition
- plenty of EOSs for cold neutron stars
- challenge of the supernova (SN) EOS:
 - finite temperature: T = 0 100 MeV
 - no weak equilibrium: $Y_p = 0 0.6$
 - wide density range: $\rho = 10^4 10^{15} \text{ g/cm}^3$
- SN EOS: multi-purpose EOS, also applicable to neutron stars and their mergers, proto-neutron stars, heavy-ion collisions, ...

Introduction state of matter in core-collapse supernovae

 without Coulomb, "bulk": first order liquid-gas phase transition below T_c~15 MeV

phase coexistence region

 with finite size effects:

 → non-uniform nuclear matter, mixture of nuclei and nucleons

Matthias Hempel Waseda, 8.3.2012

based on: [Fischer et al., ApJS 2010]

Introduction state of matter in core-collapse supernovae

- 99% of the energy emitted in neutrinos
- detailed knowledge of thermodynamic quantities and nuclear composition crucial
- at ρ ~10¹¹ 10¹³ g/cm³:
 neutrino spheres
- stall of the shock front

based on: [Fischer et al., ApJS 2010]

Matthias Hempel Waseda, 8.3.2012

Introduction

commonly used SN EOSs:

- Lattimer & Swesty 1991 (LS): non-relativistic liquid drop model
- H. Shen, Toki, Omayatsu and Sumiyoshi 1998 (STOS/Shen): relativistic mean-field (RMF), Thomas-Fermi approximation

• both models:

- one representative nucleus: "single nucleus approximation"
- no shell effects
- only α -particles of light clusters

Recent developments

new available SN tables:

Nakazato et al. 2008	quark matter with large nc added to STOS
Ishizuka et al. 2008	Hyperons added to STOS
Sagert et al. 2009	quark matter with low n_c added to STOS \rightarrow explosions in 1D
H. Shen et al. 2010	Lambdas added to STOS

G. Shen, Horowitz, Teige (2010)	tables for NL3 and FSUgold: virial expansion, relativistic mean-field (RMF), Hartree
MH & Schaffner-	tables for NL3, TM1, TMA, FSUgold, DD2:
Bielich (2010)	NSE, RMF, excluded volume
Typel et al. (2010)	table for DD2 in preparation:
	gRMF
Furusawa et al.	table for TM1 in preparation:
(2011)	liquid drop, NSE, RMF

strange physics at large densities

Recent developments

- pasta phases: Horowitz et al. 2004, Newton & Stone 2009
- light nuclei in the (SN) medium: Horowitz & Schwenk 2006, Röpke 2009, Typel et al. 2010
- weak reactions:

Langanke 2003, Arcones et al. 2008

 multifragmentation/NSE models in the supernova context: Ishizuka et al. 2003, Botvina & Mishustin 2004, 2010, Blinnikov et al. 2009

EOS model & constraints

Excluded volume NSE model with interactions

- MH, J. Schaffner-Bieleich; NPA837(2010) (HS)
- chemical mixture of nuclei and interacting nucleons in nuclear statistical equilibrium
- model characteristics:
 - ensemble of heavy nuclei
 - inclusion of all possible light nuclei
 - nuclear shell effects
 - various nucleon interactions
- input: RMF interactions, nuclear mass tables, Coulomb energies, excited states, and excluded volume effects

Excluded volume NSE model with interactions

- five tables for different RMF interactions: NL3, TM1, TMA, FSUgold, DD2
- •T = (0.1 200) MeV
- $n_B = (10^{-12} 10) \text{ fm}^{-3}$
- $Y_p = 0.01 0.6$
- 1.6 million grid-points
- full nuclear composition

Nucleons – non-linear RMF (TM1, TMA, FSUgold, NL3)

• relativistic mean-field model (RMF)

• interactions mediated via exchange of mesons and meson (self-) interactions

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - M)\psi + \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4} - g_{\sigma}\bar{\psi}\sigma\psi - \frac{1}{4}\Omega_{\mu\nu}\Omega^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} + \frac{1}{4}g_{4}(\omega_{\mu}\omega^{\mu})^{2} - g_{\omega}\bar{\psi}\gamma^{\mu}\psi\omega_{\mu} - \frac{1}{4}R^{a}{}_{\mu\nu}R^{a\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho_{\mu}^{a}\rho^{a\mu} - g_{\rho}\bar{\psi}\gamma_{\mu}\tau^{a}\psi\rho^{\mu a} - \Lambda\omega_{\mu}\omega^{\mu}\rho_{\nu}^{a}\rho^{a\mu}$$

- alternative: density-dependent coupling constants (DD2)
- coupling constants fitted to experimental data
- well-established description of finite nuclei and nuclear matter

Sugahara & Toki 1994 Toki et al. 1995 Todd-Rutel & Piekarewicz 2005 Lalazissis et al. 1997 Typel 2005, Typel et al. 2010

Matthias Hempel Waseda, 8.3.2012

Nuclei - mass tables

• experimental data of AWT (2003): over 2000 precisely measured binding energies [Audi et al.; 2003NPA729]

unknown nuclei: mass table generated with theoretical nuclear model

- TMA: BCS δ-force pairing, axial deformations, mass-number dependent coupling constants [Geng et al.; 2005PTP113]
- FSUgold: spherical, BCS pairing with constant matrix elements [Roca-Maza, private communication] [Roca-Maza, Piekarewicz; 2008PRC78]
- NL3: BCS δ -force pairing, axial deformations [Lalazissis et al.; 1999ADNDT71]
- FRDM: finite range droplet model [Möller et al.; 1995ADNDT59]

Nuclei - medium effects

• semi-empirical formula for intrinsic partition function of hot nuclei

 $g_i(T) = g_i^0 + \frac{c_1}{A_i^{5/3}} \int_0^{B_i} dE e^{-E/T} \exp(2\sqrt{a_i E}) \qquad \text{[Fai, Randrup; 1982NPA381]}$

Coulomb energies in T=0 Wigner-Seitz approximation

$$E_{Coul} = -\frac{3}{5} \frac{Z_i^2 \alpha}{R_i} \left(\frac{3}{2}x - \frac{1}{2}x^3\right)$$

possible extension: combination with liquid-drop model

 \rightarrow see talk of S. Furusawa

Excluded volume

model assumptions

- each baryon fills a volume $1/n_B^0$, volume of a nucleus $V_{A,Z} = A/n_B^0$
- nucleons must not be inside of nuclei
- nuclei must not overlap
- filling factor of the nucleons

$$\xi = V'/V$$

= $1 - \sum_{A,Z} A n_{A,Z}/n_B^0$

• effect on nuclei given by the free volume fraction

$$\kappa = 1 - n_B / n_B^0$$

Excluded volume - asymptotics

• thermodynamic potential: free energy density

$$f = f_e^0(T, n_e) + \sum_{A,Z} f_{A,Z}^0(T, n_{A,Z}) + f_{Coul}(n_e, \{n_{A,Z}\})$$

$$+\xi f_{RMF}^0(T, n'_n, n'_p) - T \sum_{A,Z} n_{A,Z} \ln(\kappa) ,$$

ideal gas expressions, Coulomb contribution, filling factor for nucleons, direct excluded volume contribution

- low fraction of nuclei, $\xi \sim 1$: unmodified RMF model
- $\kappa \to 0$ for $n_B \to n_B^0 \Rightarrow f \to \infty$ if nuclei are present \to dissociation of nuclei above saturation density
- thermodynamic fully consistent

EOS constraints - saturation properties & maximum mass

	$n_B^0 \; [{\rm fm}^{-3}]$	$E_0 [\mathrm{MeV}]$	$K \; [{ m MeV}]$	$J \; [{ m MeV}]$	$L \; [{\rm MeV}]$	$M_{\rm max} [{ m M}_{\odot}]$
TM1	0.146	-16.31	282	36.95	110.99	2.213
TMA	0.147	-16.03	318	30.66	90.14	2.022
FSUgold	0.148	-16.27	230	32.56	60.44	1.739
NL3	0.148	-16.24	271	37.39	118.50	2.791
DD2	0.149	-16.02	243	31.67	55.04	2.422
LS180	0.155	-16.00	180	28.61	73.82	1.828
LS220	0.155	-16.00	220	28.61	73.82	2.031
Exp.	~ 0.15	~ -16	240 ± 10 [1]	30 - 34 [2]	40 - 110 [2]	$> 1.97 \pm 0.04$ [3]

• span a broad range of possible RMF models

	references	type of constraint
[1]	Piekarewicz JPG 2010	compilation of measurements of isoscalar giant monopole
		resonances
[3]	Tsang et al. PRL 2009 Carbone et al. PRC 2010	compilation of experiments: isospin diffusion,pygmy dipole resonance, nuclear masses, GDR, isoscaling, antiprotonic atoms
[4]	Demorest et al. Nature 2010	measurement of Shapiro delay

EOS constraints - mass and radius measurements

Results - low density

including simulations for 15 M_{sun} progenitor of Woosley & Weaver ApJS 101 (1995)
HS TM1 in comparison with STOS TM1 and/or LS 180

MH, T. Fischer, J. Schaffner-Bielich, M. Liebendörfer, ApJ 748, 70 (2012)

Supernova simulations

- core-collapse SN simulations by Tobias Fischer, GSI Darmstadt
 - spherical symmetry
 - general relativistic radiation hydrodynamics
 - three flavor neutrino transport

• weak reactions:

- all light clusters treated as alpha-particles
- only average heavy nucleus

$$e^{-} + < A, Z > \longleftrightarrow < A, Z - 1 > +\nu_{e}$$

$$e^{-} + p \longleftrightarrow n + \nu_{e}$$

$$e^{+} + n \longleftrightarrow p + \bar{\nu}_{e}$$

$$\nu + e^{\pm} \longleftrightarrow \nu + e^{\pm}$$

$$\nu + N \longleftrightarrow \nu + N$$

$$N + N \longleftrightarrow N + N + \nu + \bar{\nu}$$

$$\nu_{e} + \bar{\nu}_{e} \longleftrightarrow \nu_{\mu/\tau} + \bar{\nu}_{\mu/\tau}$$

Nuclear composition

- general isothermal density dependence:
 nucleons → light →
 (heavies) → uniform
 nucleon matter
- low temperature: shell effects

distinction of light and heavy nuclei by charge Z=6:

$$X_a = \sum_{A,Z \le 5} An_{A,Z}/n_B$$
$$X_A = \sum_{A,Z \ge 6} An_{A,Z}/n_B$$

Matthias Hempel Waseda, 8.3.2012

15 M_{sun} progenitor - composition

- no iron group nuclei in STOS and LS
 progenitor not in full NSE
- still good agreement of composition in HS
- HS: Hempel, Schaffner-Bielich (TM1)
- STOS: Shen, et al. (TM1)
- LS: Lattimer, Swesty (K=180 MeV)

Supernova at bounce

- similar evolution
- slightly more compact PNS core

Supernova at bounce

- similar evolution
- slightly more compact PNS core
- entropy difference due to missing kinetic entropy of heavy nuclei in Shen et al.
- slightly more e-captures in HS compared to Shen et al.

Supernova at bounce

15 M_{sun} progenitor (Woosley & Weaver 1995)

- similar evolution
- slightly more compact PNS core
- entropy difference remains
- slightly more e-captures in HS compared to Shen et al. due to smaller nuclei
- appearance of light clusters behind the shock: deuterons, ³H, Li

→ change of the lowdensity model more important than change $TM1 \leftrightarrow TMA$

Light nuclei - comparison with other EOS

• T = 1 MeV:

light clusters well represented by alphas

• T ≥ 5 MeV:

large Deuteron contribution at low n_B , differences for alphas at large n_B

• n_B~ 10⁻² fm⁻³:

whole distribution of light clusters important, not representable by alphas alone

Light nuclei - animation from simulation

 $t_{pb} = -217.7 \text{ ms}$

Light nuclei - postbounce evolution

PNS core: nucleons

- PNS envelope & shock heated matter: light nuclei
- infalling matter: heavies, alphas, nucleons

Matthias Hempel Waseda, 8.3.2012 compare also:

Sumiyoshi & Röpke PRC77 2008

Typel et al. PRC81 2010

Light nuclei - measurement of symmetry energy

based on: [Natowitz et al.; 2010PRL104]

- symmetry energy extracted from low-energy heavy ion collisions
- thermodynamic conditions: T = 3 - 7 MeV and $n_B = 1/100 - 1/20 n_B^0$
- cluster formation leads to increased symmetry energy

 \rightarrow experimental evidence for appearance of light clusters in SN

[Typel et al.; 2010PRC81] [Kowalski et al.; 2007PRC75]

Nuclear distributions

- T=0.1 MeV: only one nucleus
- peaks caused by neutron shell effects
- neutron magic numbers (40), 50, 82, 126, 184
- T=1 MeV: shell effects leading to narrow distributions with multiple peaks
- T ≥ 5 MeV:

broad distributions, weakening of shell effects

Nuclear distributions in the SN

Matthias Hempel Waseda, 8.3.2012

Neutrino signal - 15 M_{sun} progenitor

- STOS TM1 and HS TM1: negligible differences
- softer LS EOS: hotter PNS, larger luminosities

 \rightarrow only slight impact of the low density EOS on the neutrino signal

Matthias Hempel Waseda, 8.3.2012

Results - high density

simulations for 40 M_{sun} progenitor of Woosley & Weaver ApJS 101 (1995)
set of EOS tables: STOS, LS 180, LS 220, HS (TMA), HS(FSUgold)

Neutrino signal - 40 M_{sun} progenitor

different times until black hole formation

μ/τ-neutrinos most sensitive to EOS because emitted from deeper layers

Matthias Hempel Waseda, 8.3.2012

40 M_{sun} progenitor - time until black hole formation

- surprising result: maximum mass of cold neutron stars in not directly correlated with t_{BH}
- non-relativistic LS collapse earlier than expected
- note: accretion rate not much affected by EOS

	M _{max} (T=0) [M _{sun}]	t _{BH} [ms]
TM1	2.22	1028
ТМА	2.02	737
FSUgold	1.74	571
LS220	2.06	521
LS180	1.83	415

40 M_{sun} progenitor - time until black hole formation

 this was not found in previous studies, because only STOS, the stiffest RMF EOS with TM1 was available:

[O'Connor & Ott.; 2011ApJ730]

[Sumiyoshi et al.; 2007ApJ667]

 why do the non-relativistic LS EOS collapse so early, respectively why do they behave so soft in the CCSN?

40 M_{sun} progenitor - state before black hole formation

- similar configurations of the five models at the state before the collapse to black hole
- main differences in the temperature profiles
- idea: use s=4 k_B, beta-equilibrium and the TOV equations to analyze the maximum mass

40 M_{sun} progenitor - correlation of t_{BH} with maximum mass

- the maximum gravitational masses found in the simulation are significantly enhanced (up to 0.6 M_{sun}) compared to T=0
- the s=4 configuration reproduces the results of the simultions

- the LS EOS show a significantly weaker stiffening by temperature than the RMF EOS
- due to: effective mass, symmetry energy, non-relativistic description
- new correlation: the time until black hole formation gives information about the finite entropy EOS and the maximum mass of proto-neutron stars!

Conclusions

- phenomenological, thermodynamic consistent model for an ensemble of nuclei in equilibrium with an interacting nucleon gas
- EOS tables and routines for composition available for NL3, TM1, TMA, FSUgold, DD2: <u>http://phys-merger.physik.unibas.ch/~hempel/eos.html</u>
- results from SN simulations (low densities):
 - broad distributions of heavy nuclei during collapse
 - large yields of light clusters in the shock heated matter
 - notable impact of the low-density EOS model
 - \rightarrow role of light nuclei and distributions on neutrino transport?
- high densities:
 - SN of massive progenitors give information about the finite entropy EOS
 - temperature effects are EOS dependent
 - \rightarrow extract information about nucleon effective mass or symmetry energy?

New equations of state in simulations of core-collapse supernovae

Matthias Hempel, Basel University Waseda, 8.3.2012

in collaboration with:

Tobias Fischer (GSI Darmstadt) Roger Käppeli (Zürich) Matthias Liebendörfer (Basel) Jürgen Schaffner-Bielich (Heidelberg)

CSCS

HP2C High Performance and High Productivity Computing

