Observational Frontiers of High-Mass (Proto)star Formation

R. S. Furuya

Subaru Telescope, NAOJ
Special thanks to
R. Cesaroni (Arcetri/INAF)
N. Ikeda (ISAS/JAXA)

Outline of Talk

- Introduction: study of high-mass star forming regions
- Disks and Toroids around young OB stars
- Gas Infall in hot molecular core
- Core mass function: a hint for stellar cluster formation
- Giant HII regions, i.e., "starburst"
- Summary

High-Mass Star Forming Regions Observational Problems

- IMF: high-mass stars are rare
- Formation in clusters \rightarrow confusion
- Large distance: > 350 pc (σ Ori), typically a few kpc
- Rapid evolution: $t_{a c c}=20 M_{\text {sun }} / 10^{-3} M_{\text {sun }}$ $y r^{-1}=210^{4} y r$
- Parental environment profoundly altered

Observational Frontiers

I) Initial conditions, including origin of IMF
2) Identification of "real" high-mass (proto)stars
3) The earliest phase of massive young stellar objects (YSOs) e.g., hyper compact HII regions
4) Accretion process
5) Formation of Giant HII regions,"starburst"
(1) and (2) require wide-field imaging spectroscopy, while (3), (4) and (5) require high-angular resolution, i.e., interferometer

This talk deals with

$M_{\text {star }} / M_{\text {sun }}$
approx. 8-15 Early B
approx. 15-30
Late 0

$$
\text { approx. } 30-65 \quad \text { Early } 0
$$

Very often misused terminology

"PROTOSTAR" should be reserved exclusively for:

A gaseous object in hydrostatic equilibrium AND
Has NOT yet begun hydrogen burning

Almost all the objects should be called either

HIGH-MASS (PROTO)STAR OR

MASSIVE YSO

Environment of High-Mass Star Forming Regions

Clouds: $10-100 \mathrm{pc} ; 10 \mathrm{~K} ; 10^{3} \mathrm{~cm}^{-3}$; ${ }^{13} \mathrm{CO}, \mathrm{C}^{18} \mathrm{O}$, etc

Clumps: I pc; 30-50 K; $10^{5} \mathrm{~cm}^{-3}$; $\mathrm{CS}, \mathrm{C}^{34} \mathrm{~S}$ etc

Hot Molecullar Cores: 0.1 pc ; $50-100 \mathrm{~K} ; 10^{7} \mathrm{~cm}^{-3} ; \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CN}$, etc

Massive YSOs: signposts: compact IR source, masers, Ultra Compact HII regions

Outflow properties, e.g., momentum rate, vary continuously as a function of source luminosity ...

Wu et al. 2004

Search for

Rotating "disks"

Tracers: Advantage \& Shortcoming

Continuum: IR, (sub) mm \& cm	High sensitivity in mass, esp, at submm (Detectable $0.1 \mathrm{M}_{\text {sun }}$)	o Confusion between disk and wind emission o No velocity info.
$\mathrm{CH}_{3} \mathrm{OH}$ masers	* High angular resolution possible * Very Common	o Derived stellar mass too low; o H_{2} jet parallel to $\mathrm{CH}_{3} \mathrm{OH}$ masers o Sensitive to variety of factors o No column density info.
 SiO masers	* High angular resolution possible * $\mathrm{H}_{2} \mathrm{O}$:Very Common	o Tracing outflow as well o OH \& SiO: Very few examples o Sensitive to variety of factors o No column density info.
Thermal Molecular Lines	* Possible to trace both outflow \& disk : Column density	o Poor angular resolution - Ambiguity in abundance

Nuerberger et al. (2007)
Chini et al. (2004)

G192.16-3.82

Shepherd \& Kurtz (1999)
Shepherd et al. (2001)

(arcsec)

SiO masers

Orion Source I

Matthews et al. 2010

Molecular Outflow (SO thermal) $\mathrm{H}_{2} \mathrm{O}$ maser: Proper Motion

Velocity fields of HMCs, rotating toroids

The Growing Evidence for "Disks" around Massive YSOs

$\mathrm{CH}_{3} \mathrm{OH}$ masers	ATCA, EVN	Norris et al. Ellingsen et al., Walsh et al. Minier et al., Edris et al., Pestalozzi et al.
OH masers	Merlin	Outflow sources: Cohen et al., Edris et al., Hoare et al.
$\mathrm{SiO} \& \mathrm{H}_{2} \mathrm{O}$ masers	Hat Creek, VLA, VLBA	e.g. Orion source I Plambeck et al.Doleman et al., Greenhill et al., Torrelles et al.
Continuum: NIR, mm \& cm	$\begin{array}{\|l\|} \hline \text { BIMA, } \\ \text { Pt-link } \end{array}$	Jet/outflow plus Disk system, Hoare et al., Gibb et al., Shepherd et al.
Molecular Lines: $\begin{aligned} & \mathrm{NH}_{3}, \mathrm{C}^{18} \mathrm{O}, \mathrm{CS}, \\ & \mathrm{C}^{34} \mathrm{~S}, \mathrm{CH}_{3} \mathrm{CN}, \ldots \end{aligned}$	VLA, SMA OVRO, BIMA PdBI, SMA NMA	UC HIls, Hot Cores Shepherd et al., Shepherd and Kurtz, Bernard et al., Sandel et al. Olmi et al. Beltran et al. Cesaroni et al., Zhang et al. Furuya et al. etc. etc \cdots.

Disks

- Mass < a few $10 M_{\text {sun }}$
- Radius ~ 1000 AU
- $L \sim 10^{4} L_{\text {sun }} \rightarrow B$ (proto)stars
- Large $t_{f f} / t_{\text {rot }}$
\rightarrow Equilibrium, circumstellar structures

Toroids

- Mass > $100 M_{\text {sun }}$
- Radius ~ 10000 AU
- $L>10^{5} L_{\text {sun }} \rightarrow O$ (proto)stars
- Small $t_{f f} / t_{\text {rot }}$
\Rightarrow Eon-equilibrium, circumcluster structures

Disks/Toroids around O/B stars

- Disks are widely found around B (proto)stars \rightarrow Star formation by disk-mediated accretion, like in low-mass stars
- No disk found around O (proto)stars, while theory predicts their presence (Krumholz et al. 2009)
- Disks might be "hidden" inside toroids
- O-star disk lifetime might be too short to detect?
- Photo-evaporation by O stars? (Hollenbach+ ‘94)
- Tidal destruction by stellar companions (Hollenbach+ ‘00)

Search for Infall in

Hot Molecular Cores

Inverse P Cyg profiles towards O-type (proto)star:

 Evidence for infall in HMC (Girart et al. 2009)

Growing Evidence for Infall in HMCs

HMC	$\boldsymbol{M}_{\mathrm{gas}}$ $\left(M_{\text {sun }}^{\circ}\right)$	$\begin{gathered} \boldsymbol{R} \\ (\mathrm{mpc}) \end{gathered}$	dM/dt ($M_{\text {sun }} / \mathrm{yr}$)
GI0.62	82	20	310^{-2}
G24.78 AI	130	20	$410^{-4} \sim 10^{-2}$
W51 N	90	70	510^{-2}
W51 e2	140	10	610^{-2}
G31.41	490	40	$310^{-3} \sim 310^{-2}$
GI9.61	100-420	30	$>310^{-2}$

Infall, Rotation, and Jet towards B-type (proto)star

Furuya et al. 2005a, 201 I

A pc-scale Clump:
1.2 mm Cont. towards GI9.6I-0.23

Clump mass $=2800+/-100 M_{\text {sun }} ; T_{d}=42 \mathrm{~K} ;$ Size $=4.1 \times \mathrm{I} .7 \mathrm{pc}$ (Furuya et al. 2005a)

Image: I .3 cm cont. $O: \mathrm{OH}$ maser $\Delta: \mathrm{H}_{2} \mathrm{O}$ maser

Image: I .3 cm cont. $O: \mathrm{OH}$ maser $\Delta: \mathrm{H}_{2} \mathrm{O}$ maser

A minimum column density of $1 \mathrm{~g} \mathrm{~cm}^{-2}$ for massive star formation

Mark R. Krumholz ${ }^{1,2}$ \& Christopher F. McKee ${ }^{3}$

Massive stars are very rare, but their extreme luminosities make them both the only type of young star we can observe in distant galaxies and the dominant energy sources in the Universe today. They form rarely because efficient radiative cooling keeps most star-forming gas clouds close to isothermal as they collapse, and this favours fragmentation into stars of one solar mass or lower ${ }^{1-3}$. Heating of a cloud by accreting low-mass stars within it can prevent fragmentation and allow formation of massive stars ${ }^{4,5}$, but the necessary properties for a cloud to form massive stars-and therefore where massive stars form in a galaxy-have not yet been determined. Here we show that only clouds with column densities of at least $1 \mathrm{~g} \mathrm{~cm}^{-2}$ can avoid fragmentation and form massive stars. This threshold, and the environmental variation of the stellar initial mass function that it implies, naturally explain the characteristic column densities associated with massive star clusters ${ }^{6-9}$ and the difference between the radial profiles of $\mathrm{H} \alpha$ and ultraviolet emission in galactic disks ${ }^{10,11}$. The existence of a threshold also implies that the initial mass function should show detectable variation with environment within the Galaxy, that the characteristic
effective adiabatic index $\gamma \approx 1.4$ throughout its volume. As even $\gamma \approx$ $1.1-1.2$ is sufficient to suppress fragmentation ${ }^{5}$, equation (1) implicitly defines a critical light-to-mass ratio $\eta_{\text {halt }}$ above which fragmentation will halt in a cloud with a given Σ, δ and T_{b}. We describe our procedure for solving this equation in the Supplementary Information.

We approximate the infrared dust opacity as $\kappa=\delta \kappa_{0}\left(\lambda_{0} / \lambda\right)^{2}$, where δ is a dimensionless number that we define to be unity at solar metallicity, λ is the radiation wavelength, and $\lambda_{0}=100 \mu \mathrm{~m}$. Observations in the Milky Way indicate ${ }^{13,17}$ that, in cold regions where dust grains are coated with ice mantles, $\kappa_{0} \approx 0.54 \mathrm{~cm}^{2} \mathrm{~g}^{-1}$. Under Milky Way conditions the minimum temperature for interstellar gas is $T_{\mathrm{b}} \approx 10 \mathrm{~K}$, with a weak density dependence that we ignore for simplicity. In addition to the Milky Way case, we also consider $\delta=0.25, T_{\mathrm{b}}=10 \mathrm{~K}$, appropriate for a low-metallicity galaxy today, and $\delta=0.25, T_{\mathrm{b}}=15 \mathrm{~K}$, typical of a galaxy at $z \approx 6$ that has low metallicity but a temperature floor of 15 K imposed by the cosmic microwave background. Figure 1 shows the value of $\eta_{\text {halt }}$ calculated for the three cases. We find that $\eta_{\text {halt }}$ declines with Σ because at higher Σ a cloud of fixed mass has a smaller radiating area and remains

Interferometric Spectra towards the Hot Molecular Core

Image: I .3 cm cont. $\bigcirc \mathrm{OH}$ maser $\Delta: \mathrm{H}_{2} \mathrm{O}$ maser

Green contour : I .3 cm cont. $\quad \triangle: \mathrm{OH}$ maser $\bigcirc: \mathrm{H}_{2} \mathrm{O}$ maser

Color: Velocity field obtained from $\mathrm{CH}_{3} \mathrm{CN}(18-17) \mathrm{K}=7$ and $\mathrm{CH}_{3}{ }^{13} \mathrm{CN}$ $(18-17) K=5$

Dashed thin contour:Total integrated intensity

Green contour : 1.3 cm cont.

Color : Velocity filed of $\mathrm{H}_{2} \mathrm{O}$ maser spots Dashed contour: $\mathrm{CH}_{3} \mathrm{CN}$ velocity field

Assuming that central (proto)star is a single star,
what does the negative detection of free-free emission tell us?

Summary: GI9.6I SMAI

- Detected gas infall, rotation of HMC, and jet perpendicular to the rotation axis, the toroid is unstable
- The HMC shows extremely high column density of $\Sigma \sim 17 \mathrm{~g} /$ cm^{-2}, corresponding to $\mathrm{N}\left(\mathrm{H}_{2}\right) \sim 4 \mathrm{e} 24 \mathrm{~cm}^{-2}$
- Negative detection of radio free-feee emission suggest that the putative (proto)star is either B0.7 or young massive YSO ($R_{\text {HII }}$ < 130 AU).
- Considering all the results, the rotating gas is highly likely "circumcluster" toroid rather than "circumstellar" one.

Fragmentation Process and

Core Mass Function

Core Mass Function

- Almost all star forming regions in solar neighborhood, e.g.,Taurus, Perseus, Orion, Ophiuchus, Pipe, Chameleon, Serpens, SI 40, ... show very similar slope of,

$$
\frac{\Delta N}{\Delta M}_{\text {cloud core }} \propto M^{-2.3 \sim-2.5}
$$

- The resemblance between CMFs (and with IMF) may be telling us that CMF is set in fragmentation process of (giant) molecular clouds

Comparison of CMF and IMF

 (Pipe Nebular; CMF derived from NIR extinction)

Core Mass Function (Orion B; $\mathrm{H}^{13} \mathrm{CO}^{+} \mathrm{J}=\mathrm{I}-0$)

©lkeda et al. 2009

1.2 mm thermal dust continuum in

IRAS 194I0+2336

Core Mass Function

- Almost all star forming regions in solar neighborhood, e.g.,Taurus, Perseus, Orion, Ophiuchus, Pipe, Chameleon, Serpens, SI40, ... show very similar slope of,

$$
\frac{\Delta N}{\Delta M_{\text {cloud core }}} \propto M^{-2.3 \sim-2.5}
$$

- The resemblance between CMFs (and with IMF) may be telling us that CMF is set in fragmentation process of (giant) molecular clouds
- ALMA will resolve cloud structure scales down to 100 $A U$ at $d=10 \mathrm{kpc}$, and would detect "lighter" cores.
"Star Formation" and "Star Burst"

Orion 30 Dor GHII.

N7714
S:burst G
Diameter
(pc)
10.400 le2-le3 600

$$
\begin{array}{cccccc}
\begin{array}{c}
\log N(\text { LyC }) \\
(1 / s)
\end{array} & .49 & 52 & 50-53 & 54 \\
\hline \begin{array}{c}
\text { lonizing } O \\
\text { stars }
\end{array} & 6 & 1000 & 10- & >10,000 \\
\hline
\end{array}
$$

Giant HIl regions

CIII must be powered by at leat le50 photons/sec, one 03 star or ten O7 star

clll cannot a scaled yp version of 442-gye TII regions

Is there single very rich cluster or are there many "normal" OB associations?
If there is a substructure, how is SF triggered and how does it propagate over regions larger than 100 pc?
What are initial conditions in ISM to produce GHIl regions? How do they depend on host galaxy? What is the shape of IMF?

Keywords of Talk

- Disks and Toroids are commonly seen around young O and B stars, respectively.
- Growing evidence for gas infall in hot molecular cores
- Core mass function: a hint for stellar cluster formation
- Giant HII regions, i.e., "starburst"

