Poster S	ession
----------	--------

P1	Ryuichiro Akaho	Waseda University	General Relativistic Boltzmann Solver for Core-collapse of Massive Stars
P2	Milad Delfan Azari	Waseda University	Occurrence of fast collective neutrino oscillations inside the neutrino sphere in core-collapse supernovae
Р3	Smaranika Banerjee	Tohoku University	Simulations of early kilonova emission from neutron star mergers
P4	Shin-ichiro Fujimoto	National Institute of Technology, Kumamoto College	Imprint of asymmetric neutrino emission of a supernova on chemical abundances in a supernova remnant
P 5	Kotaro Fujisawa	University of Tokyo (RESCEU)	The W4 method: a new multi-dimensional root-finding scheme for nonlinear systems of equations
P 6	Kiyokazu Igarashi	Tokyo University of Science	Remnant mass distribution using Hurley's single star evolution code
P 7	Wakana Iwakami	Waseda University	The Core-Collapse Supernova Simulations with the Full Boltzmann Neutrino Transport in Three-Dimensional Space
P 8	Kohei Michihata	Waseda University	Linear Analysis of MHD jet in CCSNe
P 9	Chris Nagele	University of Tokyo	The Final Fate of Supermassive $M{\sim}5{\times}10^4M_{\odot}$ Pop III Stars: Explosion or Collapse?
P10	Ko Nakamura	Fukuoka University	Core-collapse supernova simulations from a 3D progenitor model
P11	Ken'ichiro Nakazato	Kyushu Univ.	Cooling Timescale of Protoneutron Stars and Nuclear Matter Equation of State
P12	Shota Nishikawa	Waseda University	Research on the closure relation of radiation transport equation by neural network
P13	Misa Ogata	Waseda University	The numerical construction of axisymmetric equilibria of rotating stars on Lagrangian coordinates
P14	Sei Saito	Tohoku University	Spectropolarimetry of Superluminous supernova
P15	Kimihiko Shimizu	Waseda University	Instabilty of magnetohydro-jet in supernova
P16	Akihiro Suzuki	National Astronomical Observatory of Japan	Supernova ejecta colliding with a disk-like circum-stellar medium