Equation of state for supernovae and neutron stars

H. Shen	Nankai Universi	ity, Tian	jin, China
申虹	南開大学	天津	中国

In collaboration with

H. Toki RCNP, Osaka University, Japan
K. Sumiyoshi Numazu College of Technology, Japan
K. Oyamatsu Aichi Shukutoku University, Japan
J. N. Hu Nankai University, Tianjin, China
Z. W. Zhang Shanghai Jiao Tong University, China
S. S. Bao Nankai University, Tianjin, China
X. H. Wu Nankai University, Tianjin, China

PHYS.NANKAI UNIVERSITY

Contents

- Introduction
- EOS tables for supernovae
- Developments of EOS tables
- Symmetry energy effects
- > Summary

Introduction

Classification of EOS's

neutron star matter: charge neutrality; β equilibrium; $T \sim 0$ supernova matter: charge neutrality; fixed fractions; $T \neq 0$

EOS for supernovae

single nucleus approximation (SNA)

J. M. Lattimer and F. D. Swesty, Nucl. Phys. A 535, 331 (1991) liquid-drop model with Skyrme force

H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Prog. Theor. Phys. 100, 1013 (1998)

H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Astrophys. J. Suppl. 197, 20 (2011)

Thomas-Fermi with RMF (TM1)

H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, M. Takano, NPA 961 (2017) 78

Thomas-Fermi with realistic nuclear forces

nuclear statistical equilibrium (NSE)

- M. Hempel and J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010)
- A.S. Botvina, I.N. Mishustin, Nucl. Phys. A 843, 98 (2010)
- S. Furusawa, K. Sumiyoshi, S. Yamada, H. Suzuki, Astrophys. J. 772, 95 (2013)
- S. Typel, G. Ropke, T. Klahn, D. Blaschke, H. Wolter, Phys. Rev. C 81, 015803 (2010)
- G. Shen, C. J. Horowitz, E. O'Connor, Phys. Rev. C 83, 065808 (2011)

Motivation to construct EOS table

EOS for supernovae

temperature (T): 0 ~ 100 MeV proton fraction (Yp): 0 ~ 0.6 density (ρ_B):

 $10^5 \sim 10^{16} \text{ g/cm}^3$

http://www.ice.csic.es/

Models used for EOS

uniform matter at high density

RMF (relativistic Mean Field)

RMF + Thomas-Fermi approximation

Why prefer the RMF theory ?

nuclear many-body methods

nonrelativistic

Shell Model

Skyrme-Hartree-Fock (SHF)

Brueckner-Hartree-Fock (BHF)

. . .

relativistic

Relativistic Mean-Field (RMF)

Relativistic Hartree-Fock (RHF)

Relativistic Brueckner-Hartree-Fock (**RBHF**)

. . .

Relativity is important!

Brockmann, Machleidt, Phys. Rev. C 42 (1990) 1965

Comparison with nuclear data

Fig. 2. Mass differences between the predictions of the present work and the experimental data for 2157 nuclei whose measured uncertainties for the masses are less than 0.2 MeV.³⁴

L. S. Geng, H. Toki, J. Meng, Prog. Theor. Phys. 113 (2005) 785

Relativistic Mean Field Theory

Lagrangian

$$L = \overline{\psi} [i\gamma_{\mu}\partial^{\mu} - M - g_{\sigma}\sigma - g_{\omega}\gamma_{\mu}\omega^{\mu} - g_{\rho}\gamma_{\mu}\tau_{a}\rho^{a\mu}]\psi$$

$$+ \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4}$$

$$- \frac{1}{4}W_{\mu\nu}W^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} + \frac{1}{4}c_{3}(\omega_{\mu}\omega^{\mu})^{2}$$

$$- \frac{1}{4}R_{\mu\nu}^{a}R^{a\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho_{\mu}^{a}\rho^{a\mu} + \dots$$
TM1 parameter set

Lagrangian

$$\Rightarrow$$
 Equations
 \Rightarrow Mean-Field Approximation

 \downarrow
 \downarrow

 Calculate everything such as $\&$, p , $$...$

Thomas-Fermi approximation

- * body-centered cubic lattice
- * parameterized nucleon distribution
- * RMF input

$$E = E_{bulk} + E_{surface} + E_{Coulomb} + E_{Lattice} + E_{electron}$$

EOS1 (1998-version, nucleon) Shen, Toki, Oyamatsu, Sumiyoshi, Prog. Theor. Phys. 100 (1998) 1013 EOS2 (2010-version, nucleon) Shen, Toki, Oyamatsu, Sumiyoshi, Astrophys. J. Suppl. 197 (2011) 20 EOS3 (2010-version, nucleon+ Λ) Shen, Toki, Oyamatsu, Sumiyoshi, Astrophys. J. Suppl. 197 (2011) 20

http://phy.nankai.edu.cn/grzy/shenhong/EOS/index.html http://user.numazu-ct.ac.jp/~sumi/eos/index.html

http://phy.nankai.edu.cn/grzy/shenhong/EOS/index.html

Home Page of Relativistic EOS table

Updated information is in readme

Documents

- * readme.pdf
- # guide_EOS1.pdf
- * guide_EOS2.pdf
- # guide_EOS3.pdf
- Prog. Theor. Phys. 100 (1998) 1013
- * Nucl. Phys. A 637 (1998) 435

EOS table

	EOS1 1998-version nucleon	EOS2 2010-version nucleon	EOS3 2010-version nucleon + Λ	
main table	eos1.tab.gz	eos2.tab.zip	eos3.tab.zip	
table for T=0	eos1.t00.gz	eos2.t00.zip	eos3.t00.zip	
table for Yp=0	eos1.yp0.gz	eos2.yp0.zip	eos3.yp0.zip	

Contact

H. Shen School of Physics, Nankai University, Tianjin 300071, China E-mail: shennankai@gmail.com

K. Sumiyoshi Physics Group, Numazu College of Technology (NCT), Ooka 3600, Numazu, Shizuoka 410-8501, Japan E-mail: sumi@numazu-ct.ac.jp

http://user.numazu-ct.ac.jp/~sumi/eos/index.html by K.Sumiyoshi

Home Page of Relativistic EOS table for supernovae

Table of Contents

- Series of EOS tables based on the RMF framework
 - Furusawa EOS (2016): Multi-composition of nuclei
 - Nuclear statistical equilibrium (NSE) treatment, extended from Shen EOS table
 - Smooth transition to uniform matter
 - Binding energy shifts for light nuclei
 - Improved shell corrections
 - Shen EOS (2011): Improved version of Shen EOS table:
 - With extended ranges & regular grid points
 - Sets without/with hyperons
 - Furusawa EOS (2011, 2013): Multi-composition of nuclei
 - Nuclear statistical equilibrium (NSE) treatment, extended from Shen EOS table
 - Smooth transition to uniform matter
 - Hyperon EOS (2008): Inclusion of strangeness
 - With hyperons and pions, extended from Shen EOS table
 - Sets with different hyperon-interactions
 - Shen EOS (1998)
 - Original version of Shen EOS table

Series of EOS tables based on microscopic approach

- Furusawa-Togashi EOS (2017): Multi-compotision of nuclei based on the variational many-body theory
 - Nuclear statistical equilibrium (NSE) treatment, extended from Togashi EOS table
 - Smooth transition to uniform matter
 - Binding energy shifts for light nuclei
 - Improved shell corrections
- Togashi EOS (2017): Based on the variational many-body theory
 - Starting with realsitic nuclear forces
- Series of EOS tables with quarks

Comparison between EOS tables

		1998	2011	2011
		EOS1	EOS2	EOS3
Constituents	Uniform Matter Non-uniform Matter	n, p, lpha n, p, lpha, A	n, p, lpha n, p, lpha, A	n, p, α, Λ n, p, α, A
T (MeV)	Range Grid Spacing	$-1.0 \le \log_{10}(T) \le 2.0$ $\Delta \log_{10}(T) \simeq 0.1$	$-1.0 \le \log_{10}(T) \le 2.6$ $\Delta \log_{10}(T) = 0.04$	$-1.0 \le \log_{10}(T) \le 2.6$ $\Delta \log_{10}(T) = 0.04$
	Points Range	32 (including $\overline{T} = 0$) $-2 < \log_{10}(Y_p) < -0.25$	92 (including $T = 0$) $0 < Y_p < 0.65$	92 (including $T = 0$) $0 < Y_p < 0.65$
Y_p	Grid Spacing Points	$\Delta \log_{10}(Y_p) = 0.025$ 72 (including $Y_p = 0$)	$\frac{\Delta Y_p = 0.01}{66}$	$\Delta Y_p = 0.01$ 66
$ ho_B m (g/cm^3)$	Range Grid Spacing	$5.1 \le \log_{10}(\rho_B) \le 15.4$ $\Delta \log_{10}(\rho_B) \ge 0.1$	$5.1 \le \log_{10}(\rho_B) \le 16$ $\Delta \log_{10}(\rho_B) = 0.1$	$5.1 \le \log_{10}(\rho_B) \le 16$ $\Delta \log_{10}(\rho_B) = 0.1$
	Points	104	110	110

- T number of points is increased; upper limit is extended; equal grid is used
- * Y_p linear grid is used; upper limit is extended
- $\not \approx \rho_B$ upper limit is extended; equal grid is used

Phase diagrams

H.Shen, H.Toki, K.Oyamatsu, K.Sumiyoshi, Astrophys. J. Suppl. 197 (2011) 20

Distributions in non-uniform matter

Heavy nuclei in non-uniform matter

Fractions of components

Effects of Λ hyperons

non-nucleonic degrees of freedom

EOS for supernovae with hyperons

C. Ishizuka, A. Ohnishi, K. Tsubakihara, K. Sumiyoshi, S. Yamada, J. Phys. G 35 (2008) 085201

PHYSICAL REVIEW C 80, 038202 (2009)

Possibility of an s-wave pion condensate in neutron stars reexamined

A. Ohnishi,¹ D. Jido,¹ T. Sekihara,² and K. Tsubakihara³
¹Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
²Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
³Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
(Received 20 October 2008; revised manuscript received 5 September 2009; published 30 September 2009)

We examine possibilities of pion condensation with zero momentum (*s*-wave condensation) in neutron stars by using the pion-nucleus optical potential U and the relativistic mean field (RMF) models. We use low-density phenomenological optical potentials parametrized to fit deeply bound pionic atoms or pion-nucleus elastic scatterings. The proton fraction (Y_p) and electron chemical potential (μ_e) in neutron star matter are evaluated in RMF models. We find that the *s*-wave pion condensation hardly takes place in neutron stars and especially has no chance if hyperons appear in neutron star matter and/or the b_1 parameter in U has density dependence.

Experimental information

scattering experiments

NN scattering data > 4000

YN scattering data ~ 40

no YY scattering data

hypernuclear data

single- Λ hypernuclei > 30

double- Λ hypernuclei ~ 4

single- Σ hypernuclei ~ 1

O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564

Hypernuclei in the RMF model

Single- Λ hypernuclei

H. Shen, F. Yang, H. Toki, Prog. Theor. Phys. 115 (2006) 325

Double- Λ hypernuclei

Table II. $B_{\Lambda\Lambda}$ and $\triangle B_{\Lambda\Lambda}$ of double- Λ hypernuclei. The calculated results of models 1 and 2 are denoted by 1 and 2, respectively. The available experimental data are taken from Refs. 10)–14).

	$B_{\Lambda\Lambda}$		TM1		NL-SH	$\triangle B_{\Lambda\Lambda}$		TM1		NL-SH
	exp.	1	2	1	2	exp.	1	2	1	2
$^{6}_{AA}$ He	7.25 ± 0.2	5.52	5.48	4.75	4.68	1.0 ± 0.2	1.07	1.03	1.08	1.01
$^{10}_{\Lambda\Lambda}{ m Be}$	$\begin{array}{c} 17.7 \pm 0.4 \\ 14.6 \pm 0.4 \\ 8.5 \pm 0.7 \end{array}$	16.34	16.28	16.03	15.94	$\begin{array}{c} 4.3 \pm 0.4 \\ 1.2 \pm 0.4 \\ -4.9 \pm 0.7 \end{array}$	0.37	0.31	0.38	0.29
$^{13}_{AA}\mathrm{B}$	27.5 ± 0.7	22.14	22.07	22.65	22.52	4.8 ± 0.7	0.26	0.19	0.33	0.21
$^{18}_{AA}{ m O}$		25.89	25.85	25.30	25.23		0.14	0.10	0.14	0.07
$^{42}_{AA}$ Ca		38.15	38.13	37.90	37.86		0.04	0.02	0.04	0.00
$^{92}_{AA}{ m Zr}$		47.11	47.10	47.73	47.71		0.03	0.02	0.04	0.02
$^{210}_{\Lambda\Lambda}{ m Pb}$		52.19	52.19	53.03	53.02		0.03	0.02	0.02	0.02

H. Shen, F. Yang, H. Toki, Prog. Theor. Phys. 115 (2006) 325

Effects of Λ hyperons

Check of Thomas-Fermi approximation 2014

* parameterized nucleon distribution

$$n_{i}(r) = \begin{cases} \left(n_{i}^{in} - n_{i}^{out}\right) \left[1 - \left(\frac{r}{R_{i}}\right)^{t_{i}}\right]^{3} + n_{i}^{out}, & 0 \le r \le R_{i} \\ n_{i}^{out}, & R_{i} \le r \le R_{cell} \end{cases}$$

* surface energy

$$E_s = \int_{\text{cell}} F_0 |\nabla(n_n(r) + n_p(r))|^2 d^3r$$
$$F_0 = 70 \text{ MeV} \cdot \text{fm}^5$$

Check of Thomas-Fermi approximation

Self-consistent Thomas-Fermi approximation

$$Lagrangian \qquad L_{RMF} = \overline{\psi} \left[i\gamma_{\mu} \partial^{\mu} - (M + g_{\sigma}\sigma) - \left(g_{\omega}\omega + g_{\rho}\tau_{3}\rho + e\frac{\tau_{3}+1}{2}A \right) \gamma^{0} \right] \psi \\ - \frac{1}{2} (\nabla \sigma)^{2} - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{3} g_{2} \sigma^{3} - \frac{1}{4} g_{3} \sigma^{4} \\ + \frac{1}{2} (\nabla \omega)^{2} + \frac{1}{2} m_{\omega}^{2} \omega^{2} + \frac{1}{4} c_{3} \omega^{4} \\ + \frac{1}{2} (\nabla \rho)^{2} + \frac{1}{2} m_{\rho}^{2} \rho^{2} + \frac{1}{2} (\nabla A)^{2} \\ + \sum_{\nu} \overline{\psi}_{\nu} (i\gamma_{\mu} \partial^{\mu} - m_{\nu} + eA\gamma^{0}) \psi_{\nu} \right]$$
Equations
$$-\Delta \sigma + m_{\sigma}^{2} \sigma = -g_{\sigma} \rho_{s} - g_{2} \sigma^{2} - g_{3} \sigma^{3}, \\ -\Delta \omega + m_{\omega}^{2} \omega = g_{\omega} \rho_{\nu} - c_{3} \omega^{3}, \\ -\Delta \rho + m_{\rho}^{2} \rho = g_{\rho} \left(\rho_{\nu}^{p} - \rho_{\nu}^{n} \right), \\ -\Delta A = e \left(\rho_{\nu}^{p} - \rho_{\nu}^{l} \right).$$

Self-consistent Thomas-Fermi approximation

Z. W. Zhang, H. Shen, Astrophys. J. 788 (2014) 185

Self-consistent Thomas-Fermi approximation

(Comparison between Different Methods for the Cases of $Y_p = 0.3$ and $T = 1$ MeV at $\rho_B = 10^{13.0}$, $10^{13.5}$, and $10^{13.9}$ g cm ⁻³								
$\frac{\log_{10}(\rho_B)}{(g\mathrm{cm}^{-3})}$	Method	F (MeV)	E (MeV)	$\frac{S}{(k_B)}$	E _b (MeV)	Eg (MeV)	E _C (MeV)	R _c (fm)	
13.0	STF	-8.087	-7.807	0.280	-10.135	1.164	1.164	20.0	
	PTF ($F_0 = 70$)	-8.304	-8.025	0.278	-10.161	1.068	1.068	19.3	
	$PTF (F_0 = 90)$	-8.023	-7.748	0.275	-10.080	1.166	1.166	20.3	
13.5	STF	-8.577	-8.377	0.201	-10.275	0.949	0.949	16.1	
	PTF ($F_0 = 70$)	-8.754	-8.554	0.200	-10.286	0.866	0.866	15.5	
	PTF ($F_0 = 90$)	-8.527	-8.326	0.200	-10.223	0.948	0.948	16.3	
13.9	STF	-9.275	-9.112	0.163	-10.433	0.660	0.660	16.6	
	PTF ($F_0 = 70$)	-9.388	-9.226	0.162	-10.438	0.606	0.606	15.5	
	$PTF(F_0 = 90)$	-9.229	-9.066	0.164	-10.386	0.660	0.660	16.4	

Table 2

PTF ($F_0 = 90 \text{ MeV} \cdot \text{fm}^5$) \approx **SPF**

symmetry energy effects

symmetry energy effects

* generated RMF models with different L by turning g_0 and Λ_v

$$\mathcal{L}_{\text{RMF}} = \bar{\psi} \left[i \gamma_{\mu} \partial^{\mu} - (M + g_{\sigma} \sigma) - \left(g_{\omega} \omega^{\mu} + \frac{g_{\rho}}{2} \tau_{a} \rho^{a \mu} \right) \gamma_{\mu} \right] \psi$$

$$+ \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{3} g_{2} \sigma^{3} - \frac{1}{4} g_{3} \sigma^{4}$$

$$- \frac{1}{4} W_{\mu\nu} W^{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} + \frac{1}{4} c_{3} (\omega_{\mu} \omega^{\mu})^{2}$$

$$- \frac{1}{4} R_{\mu\nu}^{a} R^{a \mu\nu} + \frac{1}{2} m_{\rho}^{2} \rho_{\mu}^{a} \rho^{a \mu} + \Lambda_{v} \left(g_{\omega}^{2} \omega_{\mu} \omega^{\mu} \right) \left(g_{\rho}^{2} \rho_{\mu}^{a} \rho^{a \mu} \right)$$

* all models have the same isoscalar saturation properties

TABLE II. Parameters g_{ρ} and Λ_v generated from the TM1 model for different slope L at saturation density n_0 with fixed symmetry energy $E_{sym} = 28.05 \text{ MeV}$ at $n_{fix} = 0.11 \text{ fm}^{-3}$. The last two lines show the symmetry energy at saturation density, $E_{sym}(n_0)$, and the neutron-skin thickness of ²⁰⁸Pb, Δr_{np} . The original TM1 model has L = 110.8 MeV.

L (MeV)	40.0	50.0	60.0	70.0	80.0	90.0	100.0	110.8
g _o	13.9714	12.2413	11.2610	10.6142	10.1484	9.7933	9.5114	9.2644
$\Lambda_{\rm v}$	0.0429	0.0327	0.0248	0.0182	0.0128	0.0080	0.0039	0.0000
$E_{\rm sym}(n_0)$ (MeV)	31.38	32.39	33.29	34.11	34.86	35.56	36.22	36.89
Δr_{np} (fm)	0.1574	0.1886	0.2103	0.2268	0.2402	0.2514	0.2609	0.2699

S. S. Bao, J. N. Hu, Z. W. Zhang, H. Shen, Phys. Rev. C 90 (2014) 045802

liquid-gas phase transition in supernova matter

* spinodal instability (no surface and Coulomb) determined by the curvature of the free energy

* bulk calculation (no surface and Coulomb) phase equilibrium determined by the Gibbs conditions

* coexisting phases (CP) (surface and Coulomb perturbatively) phase equilibrium determined by the Gibbs conditions

* compressible liquid-drop (CLD) (minimization of free energy) phase equilibrium determined by minimization

* Thomas-Fermi (TF) (realistic description)

S. S. Bao and H. Shen, Phys. Rev. C9 3 (2016) 025807

FIG. 8. Pressure of uniform matter P as a function of baryon density n_b at zero temperature for various proton fraction Y_p . The black solid and red dashed lines are the results of L = 40 MeV and L = 110.8 MeV in the TM1 set, respectively. The dotted and dashed-dotted lines indicate the mechanically unstable regions from negative compressibility $(dP/dn_b < 0)$.

FIG. 10. Surface tension τ as a function of proton fraction in the liquid phase Y_p^L at T = 0 and 10 MeV using the models with L = 40 and 110.8 MeV in the TM1 set.

symmetry energy and neutron stars

smaller L corresponds to smaller R

symmetry energy and neutron stars

M. Oertel, M. Hempel, T. Klähn, S. Typel, Rev. Mod. Phys. 89, 015007 (2017)

smaller L corresponds to smaller R

Symmetry energy -> pasta phases, crust-core

S. S. Bao, H. Shen, Phys. Rev. C 91, 015807 (2015)

size of pasta structure

distributions of neutrons and protons

Phase diagram of inner crust

S. S. Bao, H. Shen, Phys. Rev. C 91, 015807 (2015)

smaller L corresponds to more pasta phases smaller L corresponds to larger crust-core transition density

- Relativity is important at high density
- Several EOS tables are available
- Our EOS has been developed and checked
- Symmetry energy has important effects