Neutrinos from Proto-neutron Star Cooling and Nuclear Equation of State: Effects of Coherent Elastic Scattering

Ken'ichiro Nakazato

(Faculty of Arts & Science, Kyushu University)

in collaboration with

H. Suzuki (Tokyo Univ. of Sci.) and H. Togashi (RIKEN)

to appear in PRC, arXiv:1710.10441 [astro-ph.HE].

Mar. 19-21, 2018 @ Waseda University.

Proto-neutron star cooling

this

phase

- Proto-neutron star (PNS) is formed at the center of SN.
 → cooled by v emission.
- EOS dependence of PNS evolution after the shock revival is studied.

Supernovae and Equation of State

- Physics in core-collapse supernovae (SNe)
 - ✓ Gravity(GR)
 ✓ (Magneto)Hydrodynamics
 - ✓ Neutrino Reaction ✓ Nuclear Equation of State
- Tables of Equation of State (EOS)
 - ✓ Skyrme type interaction
 El Eid & Hillebrandt (1980), Lattimer & Swesty (1991)
 - Relativistic mean field model
 H. Shen+ (1998, 2011), G. Shen+ (2011), Hempel+ (2012) etc.
 - Variational method with realistic nuclear force
 Togashi+ (2017)

Supernova neutrino

- Neutrinos come from deep inside supernova.
 - Interaction with nucleons.

- Step1: Core-collapse simulation of spherical GR ν radiation hydrodynamics is performed for $15 M_{\odot}$ star (Woosley & Weaver 1995) until 0.3 sec.
- Step2: After that, quasi-static evolutionary calculation of PNS (~ $1.5M_{\odot}$) cooling.
 - transfer of v_e , v_e , v_{μ} (= $v_{\tau} = v_{\mu} = v_{\tau}$) is treated in Multigroup Flux Limited Diffusion scheme
- EOS: ① Togashi (Variational model), ② Shen
 ③ Mixed (Togashi for ≥ 2 × 10¹⁴ g/cc, Shen for ≤ 10¹⁴ g/cc, and they are interpolated)

Properties of EOSs

EOS	Togashi	LS220	Shen
K[MeV]	245	220	281
S_0 [MeV]	30.0	28.6	36.9
L [MeV]	35	73.8	111
$ ho_0 [10^{14} g/cm^3]$	2.66	2.57	2.41
<i>w</i> ₀ [MeV]	16.1	16.0	16.3

- Symmetry gradient, *L*, is lower.
 - \rightarrow large symmetry energy at low densities.
 - \rightarrow small symmetry energy at high densities.

Profiles of PNS

- Soft EOS makes compact PNS.
 → high density and small radius
- Low L EOS results in low Y_e due to small symmetry energy at high densities.

Neutrino light curve

- High density EOS determines luminosity.
 - Luminosity drops steeper for faster cooling
 - Variational EOS results high density / slow cooling
- Av. energy depends also on low density EOS.

Inhomogeneous region

- Togashi EOS has inhomogeneous phase for higher density and temperature.
 - \rightarrow In inhomogeneous phase, cooling slows down and the surface is kept hot.

- Coherent elastic scattering
 - \rightarrow If nuclear size is much lower than neutrino wave length, cross section gets larger.

$$\sigma \sim \frac{G_{\rm F} E_{\nu}^2}{4\pi} [N - (1 - 4\sin^2\theta_{\rm W})Z]^2$$

neutron rich & 1 - 4 sin² $\theta_{\rm W} \sim 0$
 $\Rightarrow \sigma \propto A^2$

Nuclear size near PNS surface

- Large nuclear mass number is estimated for Togashi EOS.
 - → Cross section of the coherent elastic scattering is enhanced making cooling time scale longer.
- Thermal insulation by nuclei

$$\begin{cases} \boldsymbol{\sigma} \propto A^2 \\ 1 / \boldsymbol{\lambda} \propto X_A \cdot A \end{cases}$$

A; mass number X_A ; fraction of nuclei

Summary and Future work

- The first application of new EOS based on the variational method (Togashi EOS) for astrophysical phenomena (PNS cooling).
 → EOS table: www.np.phys.waseda.ac.jp/EOS/
- Neutrino luminosity is determined solely by high density EOS and average energy is affected also by low density region due to coherent scattering.
- Future work: Not only coherent scattering but also ion screening effects should be dealt.