# MODELING CORE-COLLAPSE SUPERNOVAE AND REMNANTS OF NEUTRON-STAR MERGERS

OLIVER JUST RIKEN

"PHYSICS OF CORE-COLLAPSE SUPERNOVAE AND COMPACT STAR FORMATIONS"

WITH: H.-TH.-JANKA, R. BOLLIG, M. OBERGAULINGER, R. GLAS, S. NAGATAKI, A. BAUSWEIN, R. ARDEVOL, S. GORIELY, M. WU, I. TAMBORRA AND OTHERS



Max Planck Institute for Astrophysics





Universe



European Research Council

Establishes by the European Commission

# PART 1: CORE-COLLAPSE SUPERNOVA SIMULATIONS

# **Predictions of Signals from SNe & NSs**



# THE NU-DRIVEN CCSN MECHANISM



Figures from Janka '07

# THE NU-DRIVEN CCSN MECHANISM

Successful revival of the shock depends *sensitively* on:

- neutrino emission and contraction of neutron star
- neutrino heating
- multidimensional hydrodynamic instabilities (SASI, convection)
- => need multidimensional simulations with accurate neutrino transport
- => but: simulations need to remain computationally feasible

-> approximations inevitable





# **CCSN MODELS: CURRENT STATUS**

- multi-D needed for explosions!
- only very few 3D models with detailed neutrino transport (computational cost ~ O(10 million core-h, Hanke+12, Lentz+15, Roberts+16)
- exploding 2D-axisymmetric models obtained by various groups (Bruenn+, Burrows+, Couch+, Janka+, Kotake+, Nakamura+, Obergaulinger+, OConnor+, Roberts+, Sumiyoshi+, Suwa+...)

using vastly different approximations concerning microphysics, general relativity and numerical schemes

- BUT: poor agreement of explosion behavior between models by different groups and codes
- demand for code comparisons and tests of approximations
- additional challenges in multi-D: high computational costs per simulation, turbulence, resolution, stochasticity

## "ALCAR" NEUTRINO TRANSPORT MODULE

(OJ, OBERGAULINGER, JANKA

'15, MNRAS, 453, 3386)

TWO-MOMENT TRANSPORT WITH ALGEBRAIC EDDINGTON FACTOR (AEF OR M1 SCHEME)

$$E = \int d\Omega \mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) \qquad \leftarrow \text{energy density,} \qquad \text{Oth-angular moment}$$

$$F^{i} = \int d\Omega \mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) n^{i} \qquad \leftarrow \text{momentum density,} \qquad \text{1st-angular moment}$$

$$P^{ij} = \int d\Omega \mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) n^{i} n^{j} \qquad \leftarrow \text{pressure,} \qquad \qquad \text{2nd-angular moment}$$

$$Q^{ijk} = \int d\Omega \mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) n^{i} n^{j} n^{k}$$

$$evolution$$

$$equations$$

$$\begin{cases} \partial_{t}E + \nabla_{j} \left( \alpha F^{j} + v^{j}E \right) + P^{ij} \nabla_{i} v_{j} + F^{i} \nabla_{i} \alpha \\ & -\partial_{\epsilon} \left[ \epsilon \left( P^{ij} \nabla_{i} v_{j} + F^{i} \nabla_{i} \alpha \right) \right] = \alpha S^{(0)}, \\ & \partial_{t}F^{i} + \nabla_{j} \left( \alpha c^{2} P^{ij} + v^{j}F^{i} \right) + F^{j} \nabla_{j} v^{i} + c^{2}E \nabla^{i} \alpha \\ & -\partial_{\epsilon} \left[ \epsilon \left( Q^{ijk} \nabla_{j} v_{k} + c^{2}P^{ij} \nabla_{j} \alpha \right) \right] = \alpha S^{(1),i}. \end{cases}$$

$$P^{ij} = P^{ij}(E, F^i)$$
$$Q^{ijk} = Q^{ijk}(E, F^i)$$

(SEE ALSO: KURODA, ROBERTS, OCONNOR, RADICE FOR OTHER M1 CODES) central approximation of M1: local closure relation for higher moments (e.g. "M1 closure")

=> removes two degrees of freedom of nu-phase space
=> large gain of computational efficiency

=> trade-off: potential loss accuracy (at least in optically thin regions)

## "VERTEX" NEUTRINO TRANSPORT MODULE

(RAMPP+'02, BURAS+'05,

HANKE+'12)

#### TWO-MOMENT TRANSPORT WITH VARIABLE EDDINGTON FACTOR AND RAY-BY-RAY-PLUS APPROXIMATION

$$E = \int d\Omega \mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) \quad \leftarrow \text{ energy density,} \quad \text{Oth-angular moment}$$

$$F^{i} = \int d\Omega \mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) n^{i} \quad \leftarrow \text{ momentum density,} \quad \text{1st-angular moment}$$

$$P^{ij} = \int d\Omega \mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) n^{i} n^{j} \quad \leftarrow \text{ pressure,} \quad \text{2nd-angular moment}$$

$$Q^{ijk} = \int d\Omega \mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) n^{i} n^{j} n^{k}$$

$$e \text{volution}$$

$$equations \quad \left\{ \begin{array}{l} \partial_{t} E + \nabla_{j} \left( \alpha F^{j} + v^{j} E \right) + P^{ij} \nabla_{i} v_{j} + F^{i} \nabla_{i} \alpha \\ & -\partial_{\epsilon} \left[ \epsilon \left( P^{ij} \nabla_{i} v_{j} + F^{i} \nabla_{i} \alpha \right) \right] = \alpha S^{(0)}, \\ & \partial_{t} F^{i} + \nabla_{j} \left( \alpha c^{2} P^{ij} + v^{j} F^{i} \right) + F^{j} \nabla_{j} v^{i} + c^{2} E \nabla^{i} \alpha \\ & -\partial_{\epsilon} \left[ \epsilon \left( Q^{ijk} \nabla_{j} v_{k} + c^{2} P^{ij} \nabla_{j} \alpha \right) \right] = \alpha S^{(1),i} \end{array} \right\}$$

$$\frac{P^{ij}}{Q^{ijk}} \quad \text{accurate}$$

$$P^{ij} = \mathbf{0}$$

$$\frac{Solve quasi-independent 1D radiative transfer problems but include lateral advection and pressure effects ("Rav-by-red) advection and pressure effects ("Rav-by-red) advection and pressure effects ("Rav-by-red) advection advection and pressure effects ("Rav-by-red) advection advecti$$

**Ray-plus**" approximation)

# **OFTEN USED APPROXIMATIONS**

- two-moment M1 scheme closure
  - => systematically tested so far only in 1D
     (e.g. O'Connor '15, Kuroda+16, Just+16Sumiyoshi '15, Dolence '15)
- "Ray-by-ray-plus": ignore non-radial flux-densities
   => claimed to enhance explodability (e.g. Skinner+ '16, Sumiyoshi '15, Dolence '15)
- ignoring/simplifying reactions which couple energy bins,
   e.g. neutrino-electron scattering, pair-annihilation
- ignoring/simplifying frame-dependent effects, e.g. Dopplerand gravitational energy-shift

# **COMPARISON STUDY**

- SFHO nuclear equation of state by Steiner, Hempel
- Progenitor models: "S20" of Woosley & Heger 2007 and "S9"
- Newtonian evolution with effective GR potential
- neutrino interaction rates by Bruenn (+ NN-Bremsstrahlung)
- RBR switched on/off
- velocity-dependent terms switched on/off
- neutrino-electron scattering switched on/off
- pair-processes: using either full description or simplified scheme suggested by O'Connor '15
- for comparison: switch on/off strange-quark corrections and many-body corrections
- direct comparison to VERTEX in 1D and 2D for 2 models

(OJ, BOLLIG, JANKA, OBERGAULINGER, GLAS, NAGASAKI, TO BE SUBMITTED)

#### 20 Msun progenitor model 'S20'

- high progenitor mass causes high mass-accretion rate
- => short advection timescales
- => good (bad) conditions for SASI (convection)





# S20: ALCAR VS VERTEX VS RBR+



# S20: IMPACT OF RBR+?

 s20-ref1

 s20-rbr1

 s20-pp-str1

 s20VX1





# **IMPACT OF NEGLECTING V-TERMS**



=> assuring similarities in all quantities relevant for the neutrino emission (except 1 model)

#### 9 Msun progenitor model 'S9'

- low progenitor mass causes low mass-accretion rate
- => long advection timescales
- => good (bad) conditions for convection (SASI)



# **S9: MODELING VARIATIONS**



## S9: IMPACT OF RBR+?



# CCSN SUMMARY

- overall good agreement between M1 code ALCAR and Boltzmann code VERTEX
- impact of RbR+: amplification of (linear) SASI sloshing modes for high-mass model (confirms Skinner+'16, Sumiyoshi+'15); only small impact in convectiondominated low-mass model
- nu-e scattering, pair-process simplifications, velocity terms all can have significant impact on explosion time
- large (small) stochastic scatter of explosion times for SASI (convection) dominated model
- CAVEATS: limited set of investigated progenitors; results might be different in 3D; results only based on 2 codes
- further code comparisons with more codes warranted including other nutransport approximations and discretization schemes

# PART 2: NS MERGERS

#### **Neutron-Star Mergers: Overview**



→ GW signal
→ ... progenitor masses
→ ... nuclear EOS

#### → short GRB

- → ... neutrino-pair annihilation
- → … Blandford-Znajek process
- → ... magnetar spindown

#### → massive outflows

- → … r-process
- →... Kilonova

# WHAT CAN WE LEARN ABOUT THE NUCLEAR EOS FROM GW OBSERVATIONS SUCH AS GW170817?

# THRESHOLD MASS FOR PROMPT COLLAPSE



maximum mass of cold, nonrotating NS

depends solely the nuclear EOS for given mass ratio M1/M2

# THRESHOLD MASS FOR PROMPT COLLAPSE



#### k is to very good accuracy a linear function of Cmax or C16

$$M_{\rm thres} = \left(-3.606 \frac{GM_{\rm max}}{c^2 R_{1.6}} + 2.38\right) \cdot M_{\rm max}$$

$$M_{\rm thres} = \left(-3.38 \frac{GM_{\rm max}}{c^2 R_{\rm max}} + 2.43\right) \cdot M_{\rm max}$$

(see Bauswein+'13, PRL 111, 131101)

# IMPLICATIONS OF DELAYED COLLAPSE FOR GW170817



# => observed M\_thres only possible for sufficiently large radii

# **IMPLICATIONS OF DELAYED COLLAPSE** FOR GW170817



R\_16 > 10.3 km R\_16 > 10.7 km R max > 9.3 km

R max > 9.6 km

(assuming tau>0ms) (assuming tau>10ms)

#### IMPLICATIONS FOR HYPOTHETICAL FUTURE DETECTION OF PROMPT COLLAPSE WITH MTOT = 3.1MSUN



=> for more details see Bauswein, OJ, Janka, Stergioulas, 2017ApJ, 850L, 34B

> (also see talk by Luca Baiotti, as well as papers: Margalit & Metzger '17, Rezzolla+ '17, Ruiz+ '17, Most+18 for independent EOS constraints)

# NU-OSCILLATIONS IN POST-MERGER BH-TORUS SYSTEMS

#### **Post-Merger BH-Torus**

(directly after its formation)



#### **Post-Merger BH-Torus Remnant** (as obtained in OJ, Bauswein, Ardevol, Goriely, Janka '15)

#### **Typical ejecta properties:**

- outflow masses:
  - ~ 5-20% of torus mass
- electron fraction:
   Ye ~ 0.1-0.3
- entropy per baryon:
   s ~ 10 30 kB
- velocity:
   v ~ 0.05– 0.1 c
- small neutrino-driven component
- dominant viscous component



 $M_{\rm BH} = 3M_{\odot}, A_{\rm BH} = 0.8, M_{\rm torus} = 0.3M_{\odot}, \alpha_{\rm vis} = 0.02$ 

(for NS-torus remnant see Perego '14, Fujibayashi '17)

## IMPACT OF NU-NU OSCILLATIONS ON THE NEUTRINO-DRIVEN WIND COMPONENT

(Wu, Tamborra, OJ, Janka, 2017PhRvD, 96l3015W)

- recently (re-)discovered that "fast pairwise flavor conversions" can lead to flavor equilibration on length scales of O(10cm) (e.g. Sawyer+ 05,09'16)
- take place whenever  $n(\nu_c) n(\bar{\nu_c})$ changes sign in angular space



## IMPACT OF NU-NU OSCILLATIONS ON THE **NEUTRINO-DRIVEN WIND COMPONENT**

z [100km]

- recently (re-)discovered that "fast pairwise flavor conversions" can lead to flavor equilibration on length scales of O(10cm) (e.g. Sawyer+ 05,09'16)
- take place whenever  $n(\nu_e) n(\bar{\nu_e})$ changes sign in angular space



## IMPACT OF NU-OSCILLATIONS ON THE NEUTRINO-DRIVEN WIND COMPONENT

- recently (re-)discovered that "fast pairwise flavor conversions" can lead to flavor equilibration on length scales of O(10cm) (e.g. Sawyer+ 05,09'16)
- take place whenever  $n(\nu_e) n(\bar{\nu_e})$ changes sign in angular space

- equilibration reduces effect of neutrinos to increase Ye
- more neutron-rich r-process material synthesized
- could be relevant also for HMNS remnants of NS mergers



# CAN NEUTRINO PAIR ANNIHILATION DRIVE SGRB JETS?

#### **Gamma-Ray Bursts**

- → first detected 1967 by VELA satellite
- → source is moving highly relativistically
- → natural suggestion: jet from rotating compact object
- Iong bursts (T>2s): connection to death of massive stars
- → short bursts (T<2s) still mysterious, most likely from NS mergers











#### **Popular Central Engine Scenarios**

#### → neutrino-pair annihilation

- neutrinos tap gravitational energy of disk e+-e- pairs thermalize  $\rightarrow$  thermal fireball
- efficiency of converting gravitational energy into jet energy?
- baryon loading in the funnel?
- → Blandford-Znajek process
- B-field taps rotation energy of central BH
   → Poynting-dominated jet
- efficient only for large-scale poloidal B-fields
- can large-scale fields be produced and sustained? MRI? Dynamo?
- → magnetar spin-down emission
- B-field taps rotation energy of central NS
   → Poynting dominated jet
- is dipole model appropriate?
- consistent with short burst timescale?









(Metzger+ '11)

#### **Popular central engine scenarios**

#### neutrino-pair annihilation

- neurines tap gravitational energy of disk
- e+-e- pairs thermalize  $\rightarrow$  thermal fireball
- efficiency of converting gravitational energy into jet energy?
- baryon loading in the funnel?



Tested using for the first time time-dependent neutrinohydrodynamics simulations

(OJ, Obergaulinger, Janka, Bauswein ApJ, 816, L30)

#### Necessary conditions for the jet to explain sGRB:

- Total energy: E~10<sup>48</sup>–10<sup>50</sup> erg
- Lorentz factor: Γ~10-100

## **Geometry of Dynamical Ejecta**

NS-NS





NS-BH

(Just et. al. '15)



(Hotokezaka et. al. '13)

#### Symmetric NS-NS Merger

baryon loading in the funnel too high, no jet launched



#### **Asymmetric NS-NS Merger**

jet is successfully launched, but then dissipates most of its kinetic energy into cloud of dynamical ejecta



#### **NS-BH Merger**

- → no dynamical ejecta in polar regions → jet can expand freely
- however, energy too low to explain majority of sGRBs



#### **Merger Summary**

- → found new robust radius constraints that can be imposed as soon as a distinction between prompt and delayed collapse is possible
- → delayed collapse -> lower radius limit, prompt collapse -> upper limit
- → probably delayed collapse for GW170816 -> R16 > 10.7 km
- "fast pairwise nu-oscillations" might have significant impact on post-merger nuirradiated outflows
- → GRB central engine is probably not solely driven by nu-nu pair annihilation