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THE NU-DRIVEN CCSN MECHANISM
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Figure 1: Schematic representation of the evolutionary stages from stellar core collapse through the onset of
the supernova explosion to the neutrino-driven wind during the neutrino-cooling phase of the proto-neutron
star (PNS). The panels display the dynamical conditions in their upper half, with arrows representing velocity
vectors. The nuclear composition as well as the nuclear and weak processes are indicated in the lower half
of each panel. The horizontal axis gives mass information. MCh means the Chandrasekhar mass and Mhc

the mass of the subsonically collapsing, homologous inner core. The vertical axis shows corresponding radii,
with RFe, Rs, Rg, Rns, and Rν being the iron core radius, shock radius, gain radius, neutron star radius, and
neutrinosphere, respectively. The PNS has maximum densities ρ above the saturation density of nuclear matter
(ρ0).
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THE NU-DRIVEN CCSN MECHANISM
Successful revival of the shock  
depends sensitively on: 

• neutrino emission and  
contraction of neutron star 

• neutrino heating 

• multidimensional hydro-  
dynamic instabilities (SASI,  
convection) 

=> need multidimensional simulations  
      with accurate neutrino transport 

=> but: simulations need to remain  
      computationally feasible 

—> approximations inevitable

Neutrino Emission from Supernovae 13
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Fig. 5 Six phases of neutrino production and its dynamical consequences (from top left to bottom
right). In the lower halves of the plots the composition of the stellar medium and the neutrino
effects are sketched, while in the upper halves the flow of the stellar matter is shown by arrows.
Inward pointing arrows denote contraction or collapse, outward pointing arrows expansion or mass
ejection. Radial distances R are indicated on the vertical axes, the corresponding enclosed masses
M(r) are given on the horizontal axes. RFe, Rs, Rn , Rg, and Rns denote the iron-core radius, shock
radius, neutrinospheric radius, gain radius (which separates neutrino cooling and heating layers),
and proto-neutron star (PNS) radius, respectively. MCh defines the effective Chandrasekhar mass,
Mhc the mass of the homologously collapsing inner core (where velocity u µ r), rc the central
density, and r0 ⇡ 2.7⇥1014 g cm�3 the nuclear saturation density. (Figure taken from Janka et al,
2007)
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Figure 1: Schematic representation of the evolutionary stages from stellar core collapse through the onset of
the supernova explosion to the neutrino-driven wind during the neutrino-cooling phase of the proto-neutron
star (PNS). The panels display the dynamical conditions in their upper half, with arrows representing velocity
vectors. The nuclear composition as well as the nuclear and weak processes are indicated in the lower half
of each panel. The horizontal axis gives mass information. MCh means the Chandrasekhar mass and Mhc

the mass of the subsonically collapsing, homologous inner core. The vertical axis shows corresponding radii,
with RFe, Rs, Rg, Rns, and Rν being the iron core radius, shock radius, gain radius, neutron star radius, and
neutrinosphere, respectively. The PNS has maximum densities ρ above the saturation density of nuclear matter
(ρ0).
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Predictions of Signals from SNe & NSs

LC, spectra
neutrinos

gravitational waves explosion asymmetries, 
pulsar kicks

nucleosynthesis

hydrodynamics of stellar plasma relativistic gravity

explosion energies, remnant masses

dynamical models

(nuclear) EoS      neutrino physics      progenitor conditions      
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CCSN MODELS: CURRENT STATUS
• multi-D needed for explosions! 

• only very few 3D models with detailed neutrino transport  
(computational cost ~ O(10 million core-h, Hanke+12, Lentz+15, Roberts+16) 

• exploding 2D-axisymmetric models obtained by various groups  
(Bruenn+, Burrows+, Couch+, Janka+, Kotake+, Nakamura+, Obergaulinger+, 
OConnor+, Roberts+, Sumiyoshi+, Suwa+…) 

using vastly different approximations concerning microphysics, general relativity 
and numerical schemes 

• BUT: poor agreement of explosion behavior between models by different groups 
and codes 

• demand for code comparisons and tests of approximations 

• additional challenges in multi-D: high computational costs per simulation, 
turbulence, resolution, stochasticity



“ALCAR” NEUTRINO TRANSPORT MODULE	 	 	

TWO-MOMENT TRANSPORT WITH ALGEBRAIC EDDINGTON FACTOR (AEF OR M1 SCHEME) 

← energy density,           0th-angular moment

← momentum density,   1st-angular moment

← pressure,                    2nd-angular moment

central approximation of M1: 
local closure relation for higher moments 
(e.g. "M1 closure”)

(SEE ALSO:  
KURODA, ROBERTS, 
OCONNOR, RADICE  

FOR OTHER M1 CODES)

2 Just et al.

Toro 1997). The time integration of the hydrodynamics vari-
ables is coupled to that of the neutrino moments using a di-
mensionally unsplit 2nd order Runge-Kutta scheme (cf. Just
et al. 2015).

The neutrino transport in both codes is based on the
multi-group evolution of the 0th- and 1st-order angular mo-
ments of the neutrino specific intensity, namely the specific
energy density, E, and specific flux density vector, F i, as
measured in the comoving frame2:
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where P ij , Qijk are the 2nd- and 3rd-order angular moment
tensors, respectively, S(0) and S(1),i the interaction source
terms measured in the comoving frame, vi is the fluid ve-
locity, c the speed of light, and ↵ is the lapse function. The
latter is computed as described in (Rampp & Janka 2002)
from the gravitational potential using angular averaged ra-
dial profiles of fluid- and neutrino-related quantities. Com-
pared to their purely Newtonian counterparts, Eqs. (3) con-
tain approximate corrections for general relativistic redshift
and time dilation. Owing to their approximate nature, the
inclusion of these corrections is not unambiguous; we opted
for an implementation in ALCAR consistent to that of VER-
TEX (cf. Rampp & Janka 2002)3.

In ALCAR, the higher-order moments P ij and Qijk

needed to close the set of moment equations are given as
local functions of the moments E,F i via
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where f ⌘ |F|/E, ni
F ⌘ F i/|F|, and the quantities �, q are

determined by the chosen closure model (see Sec. 3.5 for the
choice of closures used in this study and, e.g., Just et al.
2015 for explicit expressions of � and q). The resulting hy-
perbolic system of equations is solved in close analogy to the
hydrodynamics solver, namely using the same grid and re-
construction scheme, and a HLL Riemann solver. The time
integration of the potentially sti↵ interaction source terms,
however, is done in a mixed explicit-implicit manner in order
to ensure numerical stability (see Appendix (REF!!!)).

2
Here and in many cases below we suppress arguments or indices

expressing the dependence on space, time, energy, or species.

3
Specificallly, equations (3) can be recovered from the general

relativistic moment equations (e.g. Shibata et al. 2011; Cardall

et al. 2013, eventually after transforming the moments into the

comoving frame) by assuming the only non-trivial metric term to

be the lapse function, ↵, performing the replacement ↵vi ! vi,
and dropping all terms proportional to O(v2/c2) and O(v/cr↵).

2.2 VERTEX

VERTEX solves the same set of equations, Eqs. (2) and
(3), for hydrodynamics and neutrino transport, respectively,
except for the following di↵erences: VERTEX obtains the
higher-order moments by solving (slightly simplified) Boltz-
mann equations in addition to the moment equations. This
“variable-Eddington-factor” approach is comparable in ac-
curacy to solving the Boltzmann equation directly, and is
therefore superior in accuracy to the algebraic-Eddington-
factor method used in ALCAR. However, the tangent-ray
scheme used for this purpose is specifically designed for
spherically symmetric configurations and therefore does not
allow for the evolution of a general radiation field in full
dimensionality. Instead, the “ray-by-ray-plus” approach is
employed, in which one-dimensional transport problems are
solved quasi-independently along each radial sweep of the
spherical polar grid under the assumption of the radiation
field being axisymmetric around each ray. This approxima-
tion implies that non-radial flux-density components identi-
cally vanish. However, advection of neutrinos by the fluid
(both in radial and lateral direction) as well as lateral
neutrino-pressure e↵ects are still being accounted for (see
Buras et al. 2006, for details). VERTEX evolves Eqs. (3)
using finite-di↵erence methods and fully implicit time inte-
gration.

For the hydrodynamics part, the VERTEX simulations
make use of the well-known PROMETHEUS code (?), which
employs the original PPM method (Colella & Woodward
1984) to integrate the hydrodynamics equations with 2nd-
order Strang-type splitting. For detailed information about
the hydrodynamics treatment in VERTEX-PROMETHEUS
simulations, we refer the reader to (Buras et al. 2006; Summa
et al. 2016) and references therein.

3 MODEL SETUP

3.1 Progenitor and basic simulation setup

In this study we exclusively employ the progenitor model
“S20” by ?. This progenitor served as initial model for
CCSN simulations already in a number of previous stud-
ies (REF!!!), o↵ering the possibility of cross-comparisons.
We initialize our models using the density, temperature,
and electron fraction of the original progenitor data. For all
models in this study we simulate the collapse and the first
15�20ms after bounce in 1D (i.e. spherical symmetry). We
then follow the evolution in both 1D and 2D (i.e. axisym-
metry). For the latter case we map the configuration onto
a spherical polar coordinate system and afterwards perturb
the density, ⇢, in each cell using relative amplitudes �⇢/⇢
that are randomly distributed within [�10�4, 10�4].

3.2 Equation of state and neutrino reaction
channels

In order to close the hydrodynamics equations and obtain
information about the thermodynamic state of the fluid we
employ the equation of state (EOS) “SFHo” by Steiner et al.
(2013). Since this EOS is constructed assuming nuclear sta-
tistical equilibrium (NSE), ideally we should replace it by a
composition-dependent EOS linked with a nuclear reaction

c� 0000 RAS, MNRAS 000, 000–000

evolution 
equations

=> removes two degrees of freedom of nu-phase space  
=> large gain of computational efficiency 
=> trade-off: potential loss accuracy  
     (at least in optically thin regions)

(OJ, OBERGAULINGER, JANKA 
'15, MNRAS, 453, 3386)



“VERTEX” NEUTRINO TRANSPORT MODULE	 	 	

TWO-MOMENT TRANSPORT WITH VARIABLE EDDINGTON FACTOR  
AND RAY-BY-RAY-PLUS APPROXIMATION 

← energy density,           0th-angular moment

← momentum density,   1st-angular moment

← pressure,                    2nd-angular moment

(RAMPP+’02, BURAS+’05, 
HANKE+’12)

2 Just et al.

Toro 1997). The time integration of the hydrodynamics vari-
ables is coupled to that of the neutrino moments using a di-
mensionally unsplit 2nd order Runge-Kutta scheme (cf. Just
et al. 2015).

The neutrino transport in both codes is based on the
multi-group evolution of the 0th- and 1st-order angular mo-
ments of the neutrino specific intensity, namely the specific
energy density, E, and specific flux density vector, F i, as
measured in the comoving frame2:
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where P ij , Qijk are the 2nd- and 3rd-order angular moment
tensors, respectively, S(0) and S(1),i the interaction source
terms measured in the comoving frame, vi is the fluid ve-
locity, c the speed of light, and ↵ is the lapse function. The
latter is computed as described in (Rampp & Janka 2002)
from the gravitational potential using angular averaged ra-
dial profiles of fluid- and neutrino-related quantities. Com-
pared to their purely Newtonian counterparts, Eqs. (3) con-
tain approximate corrections for general relativistic redshift
and time dilation. Owing to their approximate nature, the
inclusion of these corrections is not unambiguous; we opted
for an implementation in ALCAR consistent to that of VER-
TEX (cf. Rampp & Janka 2002)3.

In ALCAR, the higher-order moments P ij and Qijk

needed to close the set of moment equations are given as
local functions of the moments E,F i via

P ij

E
=
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where f ⌘ |F|/E, ni
F ⌘ F i/|F|, and the quantities �, q are

determined by the chosen closure model (see Sec. 3.5 for the
choice of closures used in this study and, e.g., Just et al.
2015 for explicit expressions of � and q). The resulting hy-
perbolic system of equations is solved in close analogy to the
hydrodynamics solver, namely using the same grid and re-
construction scheme, and a HLL Riemann solver. The time
integration of the potentially sti↵ interaction source terms,
however, is done in a mixed explicit-implicit manner in order
to ensure numerical stability (see Appendix (REF!!!)).

2
Here and in many cases below we suppress arguments or indices

expressing the dependence on space, time, energy, or species.

3
Specificallly, equations (3) can be recovered from the general

relativistic moment equations (e.g. Shibata et al. 2011; Cardall

et al. 2013, eventually after transforming the moments into the

comoving frame) by assuming the only non-trivial metric term to

be the lapse function, ↵, performing the replacement ↵vi ! vi,
and dropping all terms proportional to O(v2/c2) and O(v/cr↵).

2.2 VERTEX

VERTEX solves the same set of equations, Eqs. (2) and
(3), for hydrodynamics and neutrino transport, respectively,
except for the following di↵erences: VERTEX obtains the
higher-order moments by solving (slightly simplified) Boltz-
mann equations in addition to the moment equations. This
“variable-Eddington-factor” approach is comparable in ac-
curacy to solving the Boltzmann equation directly, and is
therefore superior in accuracy to the algebraic-Eddington-
factor method used in ALCAR. However, the tangent-ray
scheme used for this purpose is specifically designed for
spherically symmetric configurations and therefore does not
allow for the evolution of a general radiation field in full
dimensionality. Instead, the “ray-by-ray-plus” approach is
employed, in which one-dimensional transport problems are
solved quasi-independently along each radial sweep of the
spherical polar grid under the assumption of the radiation
field being axisymmetric around each ray. This approxima-
tion implies that non-radial flux-density components identi-
cally vanish. However, advection of neutrinos by the fluid
(both in radial and lateral direction) as well as lateral
neutrino-pressure e↵ects are still being accounted for (see
Buras et al. 2006, for details). VERTEX evolves Eqs. (3)
using finite-di↵erence methods and fully implicit time inte-
gration.

For the hydrodynamics part, the VERTEX simulations
make use of the well-known PROMETHEUS code (?), which
employs the original PPM method (Colella & Woodward
1984) to integrate the hydrodynamics equations with 2nd-
order Strang-type splitting. For detailed information about
the hydrodynamics treatment in VERTEX-PROMETHEUS
simulations, we refer the reader to (Buras et al. 2006; Summa
et al. 2016) and references therein.

3 MODEL SETUP

3.1 Progenitor and basic simulation setup

In this study we exclusively employ the progenitor model
“S20” by ?. This progenitor served as initial model for
CCSN simulations already in a number of previous stud-
ies (REF!!!), o↵ering the possibility of cross-comparisons.
We initialize our models using the density, temperature,
and electron fraction of the original progenitor data. For all
models in this study we simulate the collapse and the first
15�20ms after bounce in 1D (i.e. spherical symmetry). We
then follow the evolution in both 1D and 2D (i.e. axisym-
metry). For the latter case we map the configuration onto
a spherical polar coordinate system and afterwards perturb
the density, ⇢, in each cell using relative amplitudes �⇢/⇢
that are randomly distributed within [�10�4, 10�4].

3.2 Equation of state and neutrino reaction
channels

In order to close the hydrodynamics equations and obtain
information about the thermodynamic state of the fluid we
employ the equation of state (EOS) “SFHo” by Steiner et al.
(2013). Since this EOS is constructed assuming nuclear sta-
tistical equilibrium (NSE), ideally we should replace it by a
composition-dependent EOS linked with a nuclear reaction

c� 0000 RAS, MNRAS 000, 000–000

evolution 
equations

higher moments obtained from from 
additional evolution of spherically 
symmetric Boltzmann equation

F_theta = F_phi = 0 solve quasi-independent 1D radiative 
transfer problems but include lateral 
advection and pressure effects (“Ray-by-
Ray-plus” approximation)

accurate



• two-moment M1 scheme closure  
=> systematically tested so far only in 1D  
      (e.g. O’Connor ’15, Kuroda+16, Just+16Sumiyoshi ’15, Dolence ’15) 

• “Ray-by-ray-plus”: ignore non-radial flux-densities  
=> claimed to enhance explodability (e.g. Skinner+ ’16, Sumiyoshi ’15, 
Dolence ’15) 

• ignoring/simplifying reactions which couple energy bins,  
e.g. neutrino-electron scattering, pair-annihilation 

• ignoring/simplifying frame-dependent effects, e.g. Doppler- 
and gravitational energy-shift

OFTEN USED APPROXIMATIONS



COMPARISON STUDY
• SFHO nuclear equation of state by Steiner, Hempel 

• Progenitor models: “S20” of Woosley & Heger 2007 and “S9” 

• Newtonian evolution with effective GR potential 

• neutrino interaction rates by Bruenn (+ NN-Bremsstrahlung) 

• RBR switched on/off 

• velocity-dependent terms switched on/off 

• neutrino-electron scattering switched on/off 

• pair-processes: using either full description  
or simplified scheme suggested by O’Connor ’15 

• for comparison: switch on/off strange-quark corrections  
and many-body corrections 

• direct comparison to VERTEX in 1D and 2D for 2 models

(OJ, BOLLIG, JANKA,  
OBERGAULINGER, GLAS,  

NAGASAKI, TO BE SUBMITTED)



20 Msun progenitor 
model ‘S20’ 

• high progenitor mass causes 
high mass-accretion rate 

=> short advection timescales 

=> good (bad) conditions for 
SASI (convection)

(ALCAR, with ray-by-ray+) 



14 Just et al.
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Figure 7. Snapshots of the isotropic-equivalent luminosities, 4⇡r2
R
✏ Frd✏, measured in the local lab-frame (left side of each panel)

and specific entropy, s (right side of each panel), for the ALCAR reference model using the s20 progenitor (left column), the RbR+
counterpart of the latter (middle column), and the corresponding VERTEX model (right column) at an early time during the transition
from the linear to the non-linear phase of the SASI (top row), at an intermediate time right after the infall of the Si/SiO interface (middle
row), and at a late time showing the failed or successful onset of shock runaway (bottom row).

c� 0000 RAS, MNRAS 000, 000–000

(ALCAR) (ALCAR 
\w RbR+) 

(VERTEX 
\w RbR+) 



S20: ALCAR VS VERTEX VS RBR+
Comparison of CCSN Codes & Approximations 15

0

0.2

0.4

0.6

L[
10

53
er

g/
s]

@
50

0k
m

,la
b

νe

−νe−0.1

νx−0.1 50

100

150

200

r [
km

]

rg

rs

10

15

20

25

<ε
>[

M
eV

]@
50

0k
m

,la
b

νe

−νe+2

νx+6

20

30

40

50

60

r N
S [

km
]

0.2 0.21 0.22 0.23 0.24 0.25

40

45

15

20

25

30

35

ε r
m

s [
M

eV
]@

r g,
co

m

νe

−νe+2

3.5
4
4.5
5
5.5
6
6.5
7

T N
S [

km
]

0
2
4
6
8

10
12

Q
he

at
 [1

051
 e

rg
/c

m
3 /s

]

-4

-3.5

-3

-2.5

-2

lo
g 

M
g [

M
O •
]

0
1
2
3
4
5
6

Q
he

at
/M

g [
10

21
 e

rg
/s

/g
]

0
2

4

6

8

10

η
he

at
 [%

]

0
0.2
0.4
0.6
0.8

1
1.2

τ a
dv

/τ
he

at

1

10

τ h
ea

t ,
 τ

ad
v [

m
s]τadv

τheat

0.2 0.4 0.6 0.8 1
tpb [s]

0
2
4
6
8

10
12
14

Ela
t

ki
n,

g [
10

48
er

g]

0.2 0.4 0.6 0.8 1
tpb [s]

0
0.5
1
1.5
2
2.5
3
3.5

χ c
on

v

s20VX-nones1
s20VX2
s20VX1
s20-rbr-nones
s20-rbr2
s20-rbr1
s20-ref1

Figure 8. Same as Fig. 4 but for the axisymmetric s20 models whose names are displayed in the panel for TNS, and additionally providing
the lateral kinetic energies in the gain region, Elat

kin,g, and the convection parameter, �conv, in the bottom row.
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Figure 12. Impact of RbR+. Each panel in the first three rows shows for a given quantity at a given radius the value of this quantity
averaged over ✓ < ⇡/10 normalized to the average of this quantity over the full sphere. The first row shows this pole-to-sphere ratio
for the energy-integrated radial fluxes (left panel) and rms-energies (right panel) summed over both species ⌫e and ⌫̄e and measured at
the gain radius in the comoving frame. The second row shows the same quantities but just for the nux neutrinos. The third row shows
the pole-to-sphere ratio for the temperature (left panel) and radial mass-flux density (right panel) at the PNS surface. The bottom row
shows the Legendre coe�cients of the dipole (left panel) and quadrupole (right panel) moments of the shock surface normalized to the
monopole moments. All curves are smoothed using running averages of 10ms.

sulting from RbR+ can generate somewhat stronger pertur-
bations that occasionally facilitate convective growth, it is
di�cult to envision how RbR-enhanced neutrino-fluxes orig-
inating from randomly distributed downflows could provide
sustained feedback to randomly rising convective bubbles.

Nevertheless, while in 3D-turbulence convective bubbles
tend to decay to form smaller bubbles, in 2D-turbulence they
tend to merge (Kraichnan 1967), which means that dipole
modes may (and actually do, cf. a1/a0 in Fig. 13) become
the dominant modes also in convection-dominated models.
Hence, one might wonder why no dipole-amplifying impact
of RbR+ is seen for models s9-nones and s9-rbr-nones like
it was seen for the s20 models. As a reason we suspect the
lack of synchronicity between down- and expansion flows,
i.e. the circumstance that the rise time of convective bub-
bles (roughly given by ⇠ ⌧heat) is too long compared to
the advection timescale, ⌧adv, for bubbles to experience ef-
ficient feedback from neutrino emission that is released by

downflows on an advection timescale. In other words, the
enhancement of polar neutrino emission triggered by some
polar downflow declines before the next convective bubble
reaches appreciable positive radial velocity. This argument
could also explain why for the two exploding models, s9-rbr
and s9-ref, we actually do see an, although small, explosion-
promoting impact of RbR+, because here ⌧heat is obviously
closer to ⌧adv (cf. Fig. 11) at least shortly before shock run-
away sets in.

4.6 Level of stochasticity and resolution
dependence

We have already found (see, e.g., Sec. 4.2) that the impact
of stochasticity and temporal fluctuations is low regarding
the emission related properties but can be substantial for
the gain-layer related properties including the time of first
shock expansion. In this section we briefly want to collect the
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sulting from RbR+ can generate somewhat stronger pertur-
bations that occasionally facilitate convective growth, it is
di�cult to envision how RbR-enhanced neutrino-fluxes orig-
inating from randomly distributed downflows could provide
sustained feedback to randomly rising convective bubbles.

Nevertheless, while in 3D-turbulence convective bubbles
tend to decay to form smaller bubbles, in 2D-turbulence they
tend to merge (Kraichnan 1967), which means that dipole
modes may (and actually do, cf. a1/a0 in Fig. 13) become
the dominant modes also in convection-dominated models.
Hence, one might wonder why no dipole-amplifying impact
of RbR+ is seen for models s9-nones and s9-rbr-nones like
it was seen for the s20 models. As a reason we suspect the
lack of synchronicity between down- and expansion flows,
i.e. the circumstance that the rise time of convective bub-
bles (roughly given by ⇠ ⌧heat) is too long compared to
the advection timescale, ⌧adv, for bubbles to experience ef-
ficient feedback from neutrino emission that is released by

downflows on an advection timescale. In other words, the
enhancement of polar neutrino emission triggered by some
polar downflow declines before the next convective bubble
reaches appreciable positive radial velocity. This argument
could also explain why for the two exploding models, s9-rbr
and s9-ref, we actually do see an, although small, explosion-
promoting impact of RbR+, because here ⌧heat is obviously
closer to ⌧adv (cf. Fig. 11) at least shortly before shock run-
away sets in.

4.6 Level of stochasticity and resolution
dependence

We have already found (see, e.g., Sec. 4.2) that the impact
of stochasticity and temporal fluctuations is low regarding
the emission related properties but can be substantial for
the gain-layer related properties including the time of first
shock expansion. In this section we briefly want to collect the
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sulting from RbR+ can generate somewhat stronger pertur-
bations that occasionally facilitate convective growth, it is
di�cult to envision how RbR-enhanced neutrino-fluxes orig-
inating from randomly distributed downflows could provide
sustained feedback to randomly rising convective bubbles.

Nevertheless, while in 3D-turbulence convective bubbles
tend to decay to form smaller bubbles, in 2D-turbulence they
tend to merge (Kraichnan 1967), which means that dipole
modes may (and actually do, cf. a1/a0 in Fig. 13) become
the dominant modes also in convection-dominated models.
Hence, one might wonder why no dipole-amplifying impact
of RbR+ is seen for models s9-nones and s9-rbr-nones like
it was seen for the s20 models. As a reason we suspect the
lack of synchronicity between down- and expansion flows,
i.e. the circumstance that the rise time of convective bub-
bles (roughly given by ⇠ ⌧heat) is too long compared to
the advection timescale, ⌧adv, for bubbles to experience ef-
ficient feedback from neutrino emission that is released by

downflows on an advection timescale. In other words, the
enhancement of polar neutrino emission triggered by some
polar downflow declines before the next convective bubble
reaches appreciable positive radial velocity. This argument
could also explain why for the two exploding models, s9-rbr
and s9-ref, we actually do see an, although small, explosion-
promoting impact of RbR+, because here ⌧heat is obviously
closer to ⌧adv (cf. Fig. 11) at least shortly before shock run-
away sets in.

4.6 Level of stochasticity and resolution
dependence

We have already found (see, e.g., Sec. 4.2) that the impact
of stochasticity and temporal fluctuations is low regarding
the emission related properties but can be substantial for
the gain-layer related properties including the time of first
shock expansion. In this section we briefly want to collect the

c� 0000 RAS, MNRAS 000, 000–000
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IMPACT OF NEGLECTING V-TERMS

=> assuring similarities in all quantities  
relevant for the neutrino emission (except 1 model) 
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Figure 6. Comparison between simulations that include (black lines) and neglect (purple lines) velocity-dependent and gravitational
redshift terms in the transport for spherically symmetric s20 models (left panels), axisymmetric s20 models (middle panels), and ax-
isymmetric s9 models (right panels). Shown are from top to bottom radial profiles of luminosities and rms-energies of electron neutrinos
⌫e, as well as angular averages of the radial velocities and absolute velocities. The plotted data have been averaged over 20ms around
the displayed times. Neutrino-related quantities shown with solid lines have been computed using the evolved neutrino moments, while
dashed lines in the top panels show (for models including velocity-dependent terms) the luminosities transformed into the local (i.e. as
measured by an observer at the corresponding radius) lab-frame. Vertical dotted lines indicate the location of the PNS surface.

bulent, non-linear phase of the SASI takes place. After this
transition the evolution of the post-shock layer is charac-
terized by turbulence during most of the time. Post-shock
convection tends to be suppressed for the rather massive s20
progenitor because of the high mass-accretion rates and cor-
respondingly short advection timescales, which act against
the development of a su�ciently large negative entropy gra-
dient. This statement is backed by the circumstance that the
�conv-parameter characterizing growth conditions of post-
shock convection (see, e.g., Foglizzo et al. 2006; Summa
et al. 2016 for the definition of this quantity and details
regarding its interpretation and computation) remains be-
low the critical value of ⇡ 3 (bottom right panel of Figs. 8
and 10). Nevertheless, since the critical condition for convec-
tion, �conv > 3, holds strictly only for the linear regime, we
cannot entirely exclude the existence of convective activity
once the turbulent and highly-nonlinear phase is reached.

4.1.2 s9 progenitor models

For the models using the s9 progenitor, which are charac-
terized by considerably smaller mass accretion rates with
respect to the s20 models (see Fig. 3) and therefore a less
compact shock surface, the situation is reversed in that the
dominant fluid instability is not SASI but post-shock convec-
tion. Correspondingly, we observe a transition of the �conv-
parameter above the critical value of 3 at about tpb ⇠ 0.1 s

(cf. Fig. 11), whereafter �conv remains >
⇠ 3 during the entire

simulation. This strong progenitor dependence of instability
regimes, with massive (low-mass) progenitors favoring SASI
(convection) has been recognized before, e.g. in Müller et al.
(2012b); Fernández et al. (2014).

4.2 Comparison with VERTEX

We start by comparing the two ALCAR models that incor-
porate the RbR+ approximation with (s20-rbr) and with-
out (s20-rbr-nones) neutrino-electron scattering to the corre-
sponding VERTEX runs (s20VX and s20VX-nones, respec-
tively).

First of all, the models without neutrino-electron scat-
tering do not explode (at least not until the end of each
simulation), while the ones including neutrino-electron scat-
tering do explode but rather late (i.e. several hundred mil-
liseconds after the infall of the Si/Si-O interface). The agree-
ment of both codes in showing clearly the impact of a rela-
tively small O(5%) variation (neutrino-electron scattering)
is thus already encouraging. Moreover, for both codes the
exploding models are characterized by a significant scatter
in explosion times (cf. Table 1): The three ALCAR models
with the same input physics but di↵erent random initial per-
turbation pattern cover a large window of explosion times
of texp = 0.48 � 0.92 s, while the two corresponding VER-

c� 0000 RAS, MNRAS 000, 000–000



9 Msun progenitor 
model ‘S9’ 

• low progenitor mass causes 
low mass-accretion rate 

=> long advection timescales 

=> good (bad) conditions for 
convection (SASI)

(ALCAR, without ray-by-ray+) 
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Figure 13. Same as Fig. 12 but for models using the s9 progenitor.

results provided by our models to identify some systematic
tendencies. Subsequently, we address the question how well
the obtained global (i.e. averaged over some time and spa-
tial region) features, including the scatter of shock-runaway
times, are converged with respect to the numerical grid.

Comparing the time evolution of ⌧adv/⌧heat (Figs. 8, 10
and 11) between various models reveals, first, that the am-
plitudes of temporal fluctuations are lower in the convection-
dominated s9 models than in the SASI-dominated s20 mod-
els, and second, that at least for the s20 models these am-
plitudes grow with the proximity of each model to the run-
away threshold. This tendency is consistent with the ob-
served time interval, �texp, within which the runaway times
are dispersed for models di↵ering only in the initial per-
turbation pattern (see Table 1): The scatter seems to be
greater for the s20 models than for the s9 models, and for
the s20 models the scatter is larger for more marginally
exploding models (e.g. s20-rbr, s20-pp-str) than for more
robustly exploding models (e.g. s20-rbr-pp). These tenden-
cies are in qualitative agreement with Cardall & Budiardja
(2015), who examined stochasticity using a large number
of simplified models and found larger dispersion of explo-
sion times for SASI-dominated models than for convection-
dominated models (see also Kazeroni et al. 2017).

The strong dependence of �texp on the progenitor and
the input physics might be one reason why previous studies
report quite diverse values of �texp (e.g. O’Connor & Couch
2015; Summa et al. 2016; Cardall & Budiardja 2015; Taki-
waki et al. 2014). An additional reason might simply be that
many studies, particularly the ones including computation-
ally expensive neutrino transport such as ours, are forced to
rely on rather poor statistics because they can only a↵ord a
small number of simulations.

Coming now back to the second question concerning
numerical convergence: For the reference s20 model, s20-
ref, and its counterpart including the RbR+ approximation,
s20-rbr, we repeated the simulations with both increased
and decreased resolution in both radial and angular direc-
tions (see models ending with “hires”, “lores”, “hi✓” and
“lo✓” in Table 1), partially even multiple times with di↵er-
ent initial perturbations. We could not identify a system-
atic trend with varying the resolution, neither regarding the
neutrino-emission properties nor the heating conditions in
the gain layer nor the scatter in explosion times. In par-
ticular, for model s20-rbr the onset of explosion does not
appear to be correlated with resolution in any direction: For
all three angular resolutions with 80, 240, and 320 zones the
scatter �texp in the times of shock runaway remains compa-
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22 Just et al.

0.8

1

1.2

1.4

1.6

1.8

Fpo
l /F

(ν
e,− ν

e)\
@

r g,
co

m

polar ν−emission and PNS properties, shock Legendre coeff., s9 models

0.95

1

1.05

1.1

1.15

ε r
m

s
po

l /ε r
m

s(ν
e,− ν

e)@
r g,

co
m

0.8

1

1.2

1.4

1.6

1.8

Fpo
l /F

(ν
x)@

r g,
co

m

0.95

1

1.05

1.1

1.15

ε r
m

s
po

l /ε r
m

s(ν
x)@

r g,
co

m

0.8

0.9

1

1.1

1.2

1.3

Tpo
l /T

@
r N

S

−2

0

2

4

6

8

(ρ
v r)

po
l /(ρ

v r)
@

r N
S

0.2 0.4 0.6 0.8 1
tpb [s]

−0.1

−0.05

0

0.05

0.1

a 1
/a

0

0.2 0.4 0.6 0.8 1
tpb [s]

0
0.02

0.04

0.06

0.08

0.1
0.12

a 2
/a

0

s9−rbr−nones
s9−rbr
s9−nones1
s9−ref1

Figure 13. Same as Fig. 12 but for models using the s9 progenitor.

results provided by our models to identify some systematic
tendencies. Subsequently, we address the question how well
the obtained global (i.e. averaged over some time and spa-
tial region) features, including the scatter of shock-runaway
times, are converged with respect to the numerical grid.

Comparing the time evolution of ⌧adv/⌧heat (Figs. 8, 10
and 11) between various models reveals, first, that the am-
plitudes of temporal fluctuations are lower in the convection-
dominated s9 models than in the SASI-dominated s20 mod-
els, and second, that at least for the s20 models these am-
plitudes grow with the proximity of each model to the run-
away threshold. This tendency is consistent with the ob-
served time interval, �texp, within which the runaway times
are dispersed for models di↵ering only in the initial per-
turbation pattern (see Table 1): The scatter seems to be
greater for the s20 models than for the s9 models, and for
the s20 models the scatter is larger for more marginally
exploding models (e.g. s20-rbr, s20-pp-str) than for more
robustly exploding models (e.g. s20-rbr-pp). These tenden-
cies are in qualitative agreement with Cardall & Budiardja
(2015), who examined stochasticity using a large number
of simplified models and found larger dispersion of explo-
sion times for SASI-dominated models than for convection-
dominated models (see also Kazeroni et al. 2017).

The strong dependence of �texp on the progenitor and
the input physics might be one reason why previous studies
report quite diverse values of �texp (e.g. O’Connor & Couch
2015; Summa et al. 2016; Cardall & Budiardja 2015; Taki-
waki et al. 2014). An additional reason might simply be that
many studies, particularly the ones including computation-
ally expensive neutrino transport such as ours, are forced to
rely on rather poor statistics because they can only a↵ord a
small number of simulations.

Coming now back to the second question concerning
numerical convergence: For the reference s20 model, s20-
ref, and its counterpart including the RbR+ approximation,
s20-rbr, we repeated the simulations with both increased
and decreased resolution in both radial and angular direc-
tions (see models ending with “hires”, “lores”, “hi✓” and
“lo✓” in Table 1), partially even multiple times with di↵er-
ent initial perturbations. We could not identify a system-
atic trend with varying the resolution, neither regarding the
neutrino-emission properties nor the heating conditions in
the gain layer nor the scatter in explosion times. In par-
ticular, for model s20-rbr the onset of explosion does not
appear to be correlated with resolution in any direction: For
all three angular resolutions with 80, 240, and 320 zones the
scatter �texp in the times of shock runaway remains compa-
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CCSN SUMMARY
• overall good agreement between M1 code ALCAR and Boltzmann code VERTEX 

• impact of RbR+: amplification of (linear) SASI sloshing modes for high-mass 
model (confirms Skinner+’16, Sumiyoshi+’15); only small impact in convection-
dominated low-mass model 

• nu-e scattering, pair-process simplifications, velocity terms all can have 
significant impact on explosion time 

• large (small) stochastic scatter of explosion times for SASI (convection) 
dominated model 

• CAVEATS: limited set of investigated progenitors; results might be different in 
3D; results only based on 2 codes 

• further code comparisons with more codes warranted including other nu-
transport approximations and discretization schemes



PART 2:  
NS MERGERS



(hyper-)massive neutron star
black hole –  
torus system

delayed collapse

NS-BH NS-NS

NS

NS/BH

prompt  
collapse

GW 

 Neutron-Star Mergers: Overview

➔ massive outflows
➔… r-process
➔… Kilonova

➔ short GRB
➔… neutrino-pair annihilation
➔… Blandford-Znajek process
➔… magnetar spindown

➔ GW signal
➔… progenitor masses
➔… nuclear EOS



WHAT CAN WE LEARN ABOUT THE NUCLEAR EOS  
FROM GW OBSERVATIONS SUCH AS GW170817?
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Prompt merger collapse and the maximum mass of neutron stars

A. Bauswein,1, 2 T. W. Baumgarte,1, 3 and H.-T. Janka1

1Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
2Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

3Department of Physics and Astronomy, Bowdoin College, Brunswick, ME 04011, USA
(Dated: September 10, 2013)

We perform hydrodynamical simulations of neutron-star mergers for a large sample of
temperature-dependent, nuclear equations of state, and determine the threshold mass above which
the merger remnant promptly collapses to form a black hole. We find that, depending on the equa-
tion of state, the threshold mass is larger than the maximum mass of a nonrotating star in isolation
by between 30 and 70 per cent. Our simulations also show that the ratio between the threshold mass
and maximum mass is tightly correlated with the compactness of the nonrotating maximum-mass
configuration. We speculate on how this relation can be used to derive constraints on neutron-star
properties from future observations.

PACS numbers: 04.30.Tv,26.60.Kp,97.60.Jd,04.40.Dg

Introduction: Merging neutron stars (NSs) are among
the most promising sources of gravitational radiation for
the new generation of gravitational wave (GW) interfer-
ometers. Detection rates for Advanced LIGO [1] and
Advanced Virgo [2] have been estimated to be between
0.4 and 400 events per year [3]. The merger may result
either in a black hole (BH) with a hot accretion torus,
or a massive, hot, differentially rotating NS. Compact bi-
nary mergers were also suggested as the central engines
of short gamma-ray bursts (GRBs) [4, 5]. Material that
becomes gravitationally unbound during the coalescence
may undergo rapid neutron-capture nucleosynthesis and
contribute to the galactic enrichment by heavy, neutron-
rich elements [5, 6]. The heat release by the radioactive
decay of the nucleosynthesis products may also power
electromagnetic counterparts [7–9], which are already be-
ing searched for [10, 11].

The dynamics and observable signatures of NS merger
depend on the binary masses M1,2 and the equation of
state (EoS) [12–25] (see also [26–28] for reviews). At nu-
clear densities, the EoS is not completely known (see,
e.g., [29]) but plays a crucial role in determining the
immediate outcome of coalescence. For sufficiently low-
mass binaries the merger results in a stable NS. For more
massive binaries the remnant will ultimately form a BH.
In the delayed collapse scenario, the two stars form a sin-
gle, differentially rotating merger remnant that is tem-
porarily supported against gravitational collapse by cen-
trifugal and thermal effects [30, 31]. Viscous processes,
radiation of GWs and emission of neutrinos redistribute
and reduce the remnant’s angular momentum and energy,
prompting a delayed collapse on a secular timescale. Al-
ternatively, the merger may lead to an immediate, prompt
collapse on a dynamical timescale. Such a collapse is
triggered for more massive binaries, whose total mass
Mtot = M1 +M2 cannot be stabilized. For a given EoS
one can thus define a threshold binary mass Mthres that
separates the two scenarios of prompt and delayed col-

lapse. The former occurs for Mtot > Mthres, while a
dynamically stable remnant is formed for Mtot < Mthres.
It is intuitive to assume that Mthres scales with the

maximum mass Mmax of isolated, nonrotating NSs [20],

Mthres = k ·Mmax. (1)

Here Mmax is determined by the EoS and can be found
by integrating the Tolman-Oppenheimer-Volkoff (TOV)
equations (equations of relativistic hydrostatic equilib-
rium) [32, 33]. The coefficient k also depends on the
EoS, or equivalently on NS properties [12–14, 20].
In this paper we adopt a large set of temperature-

dependent, nuclear EoSs in numerical simulations of bi-
nary neutron-star mergers to examine the dependence
of k on the EoS, and to establish a relation between
Mthres and Mmax. We focus on equal-mass binaries,
but also comment on asymmetric systems below. We
find that k is tightly correlated with the compactness
Cmax = (GMmax)/(c2Rmax) of the maximum-mass TOV
configuration (G is the gravitational constant and c the
speed of light). We provide a simple, analytical model
to motivate such a correlation, and discuss how our re-
sults can be used to constrain NS properties, in particu-
lar Mmax, from future observations. For a given EoS our
findings predict which binary systems undergo prompt or
delayed collapse upon merger with corresponding conse-
quences for the post-merger GW signal, the mass ejec-
tion during coalescence and the particular conditions
for launching a collimated outflow favorable for a GRB
(e.g. torus properties and baryon loading of the environ-
ment).
Method: We perform numerical simulations of NS

mergers to determine the EoS dependence of Mthres, us-
ing a 3D relativistic smoothed particle hydrodynamics
(SPH) code that employs the conformal flatness approx-
imation of Einstein’s field equations and includes a GW
backreaction scheme to account for energy and angular
momentum losses due to GW emission (see [15, 34, 35] for

maximum mass  
of cold, nonrotating NS

M1+M2 > M_thres -> prompt collapse 
M1+M2 < M_thres -> delayed collapse  

 

depends solely the nuclear EOS 
for given mass ratio M1/M2
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tating NSs (Stergioulas et al. 2004), assuming a spacetime
metric of the form

ds2
= −e2νdt2 + e2ψ(dφ−ωdt)2

+ e2µ(dr2
+ r2dθ2), (1)

where ν, ψ, ω and µ are four metric functions that depend
on the coordinates r and θ only. Matter is assumed to be a
perfect fluid with stress energy tensor

Tαβ
= (e+P)uαuβ +Pgαβ, (2)

where α,β are spacetime indices, gαβ is the metric tensor, uα

is the four-velocity, P is pressure and e is energy density.
We have extended the RNS code to a new, 3-

parameter rotation law, that allows for a different rota-
tional description of the envelope, compared to the core
of the star. Specifically, the usual 1-parameter rotation
law introduced in Komatsu et al. (1989) and used in a
many previous studies (see Friedman & Stergioulas (2013);
Paschalidis & Stergioulas (2016) for recent reviews) is ex-
tended as

F(Ω) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A2
1
(Ωc−Ω)+ (A2

2
−A2

1
)(1−β)Ωc, Ω ≤ βΩc,

A2
2
(Ωc−Ω), βΩc ≤Ω ≤Ωc,

(3)

where F(Ω) := utuφ and A1,A2,β are the three parameters of
the rotation law, while Ω := ut/uφ is the angular velocity as
measured by an observer at infinity, Ωc is the angular ve-
locity at the center of the star. The rotation law reduces to
the usual 1-parameter law in Komatsu et al. (1989) when
setting β = 1. For the current qualitative study, we choose
Â1 := A1/re = 1, Â2 := A2/re = 1.225 and β = 0.8 with the equa-
torial radius re. Similar qualitative behaviour is obtained for
other values of the parameters that are within the range that
produces equilibrium models with similar bulk properties as
those of the remnants in simulations of binary NS mergers.

We stress that since we are interested in the prompt
collapse of remnants, we are not concerned with the de-
tailed rotational profile several dynamical timescales after
merging, which has been extracted e.g. in Shibata et al.
(2005); Kastaun & Galeazzi (2015); Guilet et al. (2016);
Hanauske et al. (2016); Kastaun et al. (2016b,a). Hence, ro-
tational law (3) suffices for a first qualitative investigation
such as the one presented here. In fact, our main result is
rather insensitive to the details of the rotation law. It is only
important to allow for a slower-rotating envelope such that
stars can reach high masses (as those typical for remnants)
without encountering mass-shedding. Further refinement of
our findings can be performed in the future with more so-
phisticated rotation laws.

2.2 Equations of state

For constructing equilibrium models of rotating NSs, we are
neglecting, to a first approximation, thermal effects, since
we are only interested in qualitatively reproducing the col-
lapse behavior of merger remnants. Remnants are in fact
non-barotropic and constructing corresponding equilibrium
models would in any case require an averaging step, to pro-
duce pseudo-barotropic equilibria (Friedman & Stergioulas
2013). However, for typical temperatures of a few ten MeV
as expected in merger remnants, the stellar structure is
only moderately altered at higher densities: at fixed den-
sity the pressure is increased by order of 10 per cent com-
pared to the pressure at zero temperature (see e.g. Fig. 1
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Figure 1. Mass-radius relations of non-rotating NSs for all EoSs
used in this study. R denotes the circumferential radius and M

refers to the gravitational mass. Symbols mark the maximum-
mass configurations.

in Bauswein et al. (2010)). Hence, the qualitative collapse
behaviour is retained, to a first approximation, even when
considering zero-temperature EoSs1. Following the same ar-
guments, we assume neutrino-less beta-equilibrium to com-
pute stellar equilibrium models.

We consider a wide range of a total of 18 EoSs. 8 of these
EoSs are available with full temperature and composition
dependence (DD2, LS220, LS375, NL3, SFHO, SFHX, TM1
and TMA, see Table 1 for the definition of the acronyms and
references), but are used in the zero-temperature limit for
constructing equilibrium models. 8 EoSs (APR, ppAPR3,
ppENG, ppH4, ppMPA1, ppMS1, ppMS1b and Sly4) are
zero-temperature EoSs and are implemented in their piece-
wise polytropic form provided in Read et al. (2009) (except
for APR and SLy4, which are provided by tables taken from
the Lorene package http://www.lorene.obspm.fr). Finally,
we include two additional piecewise polytropes, where the
parameters were chosen in order to obtain models with prop-
erties that are not covered by other EoSs. For these two addi-
tional piecewise polytropes we set {log p1 = 34.75,Γ1 = 3.0,Γ2 =

2.0,Γ3 = 2.0} and {log p1 = 34.75,Γ1 = 3.0,Γ2 = 2.6,Γ3 = 2.0} in
the terminology of Read et al. (2009).

Table 1 lists the mass Mmax and radius Rmax of
the maximum-mass configuration of non-rotating NSs
described by these 18 EoSs (obtained by solving the

1 To asses the quantitative impact of thermal effects we redid hy-
drodynamical simulations for the DD2 EoS as in Bauswein et al.
(2013a). For this EoS we determined the threshold mass in sim-
ulations with the full temperature-dependent EoS table, in runs
with the EoS at zero temperature and in calculations that em-
ploy an appximate treatment of thermal effects choosing differ-
ent values of Γth, which regulates the strength of the thermal
pressure contribution. We find Mthres = 3.35 M⊙ for the full ta-
ble, Mthres = 3.425 M⊙ for the zero-temperature calculation, and
Mthres = 3.35 M⊙ for Γth = 1.5, Mthres = 3.425 M⊙ for Γth = 1.75 and
Mthres = 3.425 M⊙ for Γth = 2. We thus conclude that the influence
of thermal effects on the collapse behavior is relatively small.

MNRAS 000, 1–11 (2017)

R16
Rmax

Mmax

3

0.22 0.24 0.26 0.28 0.3 0.321.3

1.35

1.4

1.45

1.5

1.55

1.6

Cmax, C
*
1.6

k

FIG. 1: Coefficient k (eq. (1)) as a function of Cmax =
GMmax/(c2Rmax) (crosses) and C∗

1.6 = GMmax/(c2R1.6) (cir-
cles).

six barotropic EoSs with a hybrid treatment of finite-
temperature effects were adopted and an approximate
relation between k and the radius R1.4 of a 1.4 M⊙ NS
was suggested. Testing this relationship with our ex-
tended set of temperature-dependent EoSs results in a
distribution with rather wide scattering instead of a tight
correlation (see Fig. 2, left panel, and Tab. I; R1.6 is
very similar to R1.4). However, using the numerical data
of [20] and expressing k as a function of C∗

1.6 or Cmax

rather than R1.4, we found a tight correlation, as for our
results. Therefore, we suspect that the approximate scal-
ing with R1.4 suggested in [20] is a selection effect due to
the limited number of EoSs used therein [66].

The compactness Cmax is a measure of the EoS’s stiff-
ness at high densities (Fig. 2, right panel; see also [29,
56]), where we characterize the stiffness by the ratio of
the mean density, ⟨ρ⟩ = 3Mmax/(4πR3

max), to the cen-
tral density ρc (i.e. the inverse central condensation).
A tight correlation between k and Cmax thus implies
that k depends predominantly on the stiffness of the
EoS. This dependence can be motivated qualitatively
with the help of a simple Newtonian model. As sug-
gested in [57], a rough estimate of the fractional increase
in the maximum mass, δM/Mmax, is given by 3T/|W |,
so that k ≈ 1 + 3T/|W |. Here T is the rotational ki-
netic energy and W the potential energy. We compute
T = J2/(2I), where I is the remnant’s moment of inertia,
from the angular momentum J that the binary carries
at the instant of merging. Approximating the merging
of an equal-mass binary in circular orbit to occur when
the binary separation is twice the radius of each individ-
ual (spherical) star, R⋆, and assuming that the progen-
itors’ masses are concentrated at their centers, we find
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FIG. 2: Left panel: Coefficient k (eq. (1)) versus radius R1.6 of
a 1.6 M⊙ NSs. Right panel: Compactness Cmax as a function
of the EoS’s stiffness expressed by the ratio of the average
density ⟨ρ⟩ = 3Mmax/(4πR

3
max) and central energy density

ρc.

J2 ≈ GM3
totR⋆/8. Neglecting mass loss as well as devi-

ations from spherical symmetry, and assuming that the
merger remnant forms a polytrope with polytropic index
n, we have W = −3G/(5 − n)M2

tot/R, where R is the
radius of the remnant, and I = 2κnMtotR2/5. Here the
coefficients κn depend on n only and are tabulated in
[58]. The EoS’s stiffness as well as κn increases with de-
creasing n. Using the polytropic mass-radius relationship
for the merging NSs and merger remnant we also have
R⋆/R = 2(n−1)/(3−n). Collecting terms we now obtain
k ≈ 1+5(5−n) 2(n−1)/(3−n)/(32κn). While this crude ap-
proximation overestimates the deviation of k from unity
by about a factor of two, it correctly predicts two im-
portant qualitative features of our numerical results: It
suggests that k depends predominantly on the EoS’s stiff-
ness (since for Newtonian polytropes the stiffness ⟨ρ⟩/ρc
depends on n only), and it shows that k decreases with
increasing stiffness (which can be seen by inserting values
for n and κn). Loosely speaking, a binary with a stiffer
EoS (i.e. a larger ⟨ρ⟩/ρc) has less angular momentum
when merging and its remnant has a larger moment of in-
ertia. These effects combine to decrease T/|W |, thereby
decreasing k.

For the EoSs in our sample we also observe a tight
correlation between Rmax and R1.6, which implies a close
relation between Cmax and C∗

1.6.

Observational constraints on the maximum NS mass:
The findings of this study may help to place limits on
the maximum mass Mmax of NSs in the case that future
observations, e.g. GW detections, provide an estimate of
Mthres (cf. [12]). We assume that delayed and prompt col-
lapse can be distinguished from the presence or absence
of GW emission in the 2-4 kHz range produced by the
oscillations of the merger remnant, and that the binary
mass of the merger can be inferred from the preceeding
GW inspiral signal, which thus sets a bound on Mthres.
Depending on the nature of available observations, this

Cmax  
= Mmax/Rmax

C16  
= Mmax/R16
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Figure 1. Threshold binary mass Mthres for prompt collapse as function of Mmax for di↵erent R1.6 (left panel, Eq. 2) and Rmax

(right panel, Eq. 3) (solid lines). The dark blue band shows the total binary mass of GW170817. This provides a lower limit
on Mthres. The true threshold binary mass must lie within the light blue areas if GW170817 resulted in a delayed/no collapse.
This rules out NSs with R1.6  10.30+0.18

�0.03 km and Rmax  9.26+0.17
�0.03 km. Causality requires Mthres � 1.22Mmax (left panel) and

Mthres � 1.23Mmax (right panel)

by hydrodynamical simulations that the threshold bi-
nary mass to good accuracy follows

Mthres =

✓
�3.606

GMmax

c2R1.6
+ 2.38

◆
· Mmax (2)

with R1.6 being the radius of a nonrotating NS with a
mass of 1.6 M� and Mmax being the maximum mass of
nonrotating NSs. The relation was derived from simu-
lations of symmetric binary mergers but also holds for
moderately asymmetric systems (Bauswein et al. 2013a;
Bauswein & Stergioulas 2017). We verify by additional
simulations that strongly asymmetric mergers with mass
ratio q = 0.6 have a threshold binary mass which is sys-
tematically lower by 0.1 to 0.3 M� than Mthres of equal-
mass binaries. This reduction of Mthres for asymmetric
binaries is understandable. The heavier binary compo-
nent forming the core of the merger remnant moves more
slowly on its orbit and thus the specific angular momen-
tum in the core is relatively low, which results in less sta-
bilization. If GW170817 was very asymmetric, one has
Masym

thres � Mtot, which implies that Eq. (1) is conserva-
tive because Mthres > Masym

thres for a given R1.6. Avoiding
a prompt collapse in the asymmetric case would require
an even larger value of R1.6 than for symmetric mergers.

A similarly accurate discription of Mthres is given by
the fit

Mthres =

✓
�3.38

GMmax

c2Rmax
+ 2.43

◆
· Mmax (3)

with the radius Rmax of the maximum-mass configura-
tion. Eq. (2) is accurate to better than 0.1 M� (see
Bauswein et al. (2013a, 2016) for details). The existence

of these relations has been solidified by semi-analytic cal-
culations of equilibrium models (Bauswein & Stergioulas
2017).

3.2. Radius constraints

Equations (2) and (3) imply constraints on NS radii
R1.6 and Rmax since the total binary mass of GW170817
represents a lower bound on Mthres (Eq. (1)). Figure 1
(left panel) shows Mthres(Mmax; R1.6) (Eq. (2)) for dif-
ferent chosen values of R1.6 (solid lines). Every sequence
terminates at

Mmax =
1

3.10
c2R1.6/G, (4)

which is a safe upper limit on Mmax for the given R1.6.
Extending various microphysical EoSs with a maximally
sti↵ EoS, i.e. vsound = c, beyond the central density of a
NS with 1.6 M� determines the highest possible Mmax

for a given R1.6 compatible with causality. With Eq. (2)
it implies Mthres � 1.22Mmax.

In Fig. 1 the horizonal dark blue band refers to the
measured lower limit of Mthres given by the total binary
mass of GW170817 (Eq. (1)). This GW measurement
thus rules out EoSs with very small R1.6 because those
EoSs would not result in a delayed collapse for the mea-
sured binary mass. The allowed range of possible stellar
parameters is indicated by the light blue area. The solid
blue curve corresponds to the smallest R1.6 compatible
with Eq. (1). Hence, the radius of a 1.6 M� NS must be
larger than 10.30+0.15

�0.03 km. The error bar corresponds to
the radii compatible with the error in Mtot. Arguments
about the error budget and the robustness are provided
in Sect. 3.3.
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with R1.6 being the radius of a nonrotating NS with a
mass of 1.6 M� and Mmax being the maximum mass of
nonrotating NSs. The relation was derived from simu-
lations of symmetric binary mergers but also holds for
moderately asymmetric systems (Bauswein et al. 2013a;
Bauswein & Stergioulas 2017). We verify by additional
simulations that strongly asymmetric mergers with mass
ratio q = 0.6 have a threshold binary mass which is sys-
tematically lower by 0.1 to 0.3 M� than Mthres of equal-
mass binaries. This reduction of Mthres for asymmetric
binaries is understandable. The heavier binary compo-
nent forming the core of the merger remnant moves more
slowly on its orbit and thus the specific angular momen-
tum in the core is relatively low, which results in less sta-
bilization. If GW170817 was very asymmetric, one has
Masym

thres � Mtot, which implies that Eq. (1) is conserva-
tive because Mthres > Masym

thres for a given R1.6. Avoiding
a prompt collapse in the asymmetric case would require
an even larger value of R1.6 than for symmetric mergers.
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the fit
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with the radius Rmax of the maximum-mass configura-
tion. Eq. (2) is accurate to better than 0.1 M� (see
Bauswein et al. (2013a, 2016) for details). The existence

of these relations has been solidified by semi-analytic cal-
culations of equilibrium models (Bauswein & Stergioulas
2017).

3.2. Radius constraints

Equations (2) and (3) imply constraints on NS radii
R1.6 and Rmax since the total binary mass of GW170817
represents a lower bound on Mthres (Eq. (1)). Figure 1
(left panel) shows Mthres(Mmax; R1.6) (Eq. (2)) for dif-
ferent chosen values of R1.6 (solid lines). Every sequence
terminates at

Mmax =
1

3.10
c2R1.6/G, (4)

which is a safe upper limit on Mmax for the given R1.6.
Extending various microphysical EoSs with a maximally
sti↵ EoS, i.e. vsound = c, beyond the central density of a
NS with 1.6 M� determines the highest possible Mmax

for a given R1.6 compatible with causality. With Eq. (2)
it implies Mthres � 1.22Mmax.

In Fig. 1 the horizonal dark blue band refers to the
measured lower limit of Mthres given by the total binary
mass of GW170817 (Eq. (1)). This GW measurement
thus rules out EoSs with very small R1.6 because those
EoSs would not result in a delayed collapse for the mea-
sured binary mass. The allowed range of possible stellar
parameters is indicated by the light blue area. The solid
blue curve corresponds to the smallest R1.6 compatible
with Eq. (1). Hence, the radius of a 1.6 M� NS must be
larger than 10.30+0.15

�0.03 km. The error bar corresponds to
the radii compatible with the error in Mtot. Arguments
about the error budget and the robustness are provided
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k is to very good accuracy  
a linear function of Cmax or C16

(see Bauswein+’13,  
PRL 111, 131101)
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by hydrodynamical simulations that the threshold bi-
nary mass to good accuracy follows
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+ 2.38
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· Mmax (2)

with R1.6 being the radius of a nonrotating NS with a
mass of 1.6 M� and Mmax being the maximum mass of
nonrotating NSs. The relation was derived from simu-
lations of symmetric binary mergers but also holds for
moderately asymmetric systems (Bauswein et al. 2013a;
Bauswein & Stergioulas 2017). We verify by additional
simulations that strongly asymmetric mergers with mass
ratio q = 0.6 have a threshold binary mass which is sys-
tematically lower by 0.1 to 0.3 M� than Mthres of equal-
mass binaries. This reduction of Mthres for asymmetric
binaries is understandable. The heavier binary compo-
nent forming the core of the merger remnant moves more
slowly on its orbit and thus the specific angular momen-
tum in the core is relatively low, which results in less sta-
bilization. If GW170817 was very asymmetric, one has
Masym

thres � Mtot, which implies that Eq. (1) is conserva-
tive because Mthres > Masym

thres for a given R1.6. Avoiding
a prompt collapse in the asymmetric case would require
an even larger value of R1.6 than for symmetric mergers.

A similarly accurate discription of Mthres is given by
the fit

Mthres =
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GMmax
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+ 2.43
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· Mmax (3)

with the radius Rmax of the maximum-mass configura-
tion. Eq. (2) is accurate to better than 0.1 M� (see
Bauswein et al. (2013a, 2016) for details). The existence

of these relations has been solidified by semi-analytic cal-
culations of equilibrium models (Bauswein & Stergioulas
2017).

3.2. Radius constraints

Equations (2) and (3) imply constraints on NS radii
R1.6 and Rmax since the total binary mass of GW170817
represents a lower bound on Mthres (Eq. (1)). Figure 1
(left panel) shows Mthres(Mmax; R1.6) (Eq. (2)) for dif-
ferent chosen values of R1.6 (solid lines). Every sequence
terminates at

Mmax =
1

3.10
c2R1.6/G, (4)

which is a safe upper limit on Mmax for the given R1.6.
Extending various microphysical EoSs with a maximally
sti↵ EoS, i.e. vsound = c, beyond the central density of a
NS with 1.6 M� determines the highest possible Mmax

for a given R1.6 compatible with causality. With Eq. (2)
it implies Mthres � 1.22Mmax.

In Fig. 1 the horizonal dark blue band refers to the
measured lower limit of Mthres given by the total binary
mass of GW170817 (Eq. (1)). This GW measurement
thus rules out EoSs with very small R1.6 because those
EoSs would not result in a delayed collapse for the mea-
sured binary mass. The allowed range of possible stellar
parameters is indicated by the light blue area. The solid
blue curve corresponds to the smallest R1.6 compatible
with Eq. (1). Hence, the radius of a 1.6 M� NS must be
larger than 10.30+0.15

�0.03 km. The error bar corresponds to
the radii compatible with the error in Mtot. Arguments
about the error budget and the robustness are provided
in Sect. 3.3.

=> observed M_thres only possible  
for sufficiently large radii
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R_max > 9.3 km         R_max > 9.6 km 

(assuming tau>0ms)         (assuming tau>10ms)
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Figure 1 (right panel) displays Mthres(Mmax; Rmax)
for di↵erent chosen Rmax (solid lines). The di↵erent
sequences for fixed Rmax are constrained by causality
(Koranda et al. 1997; Lattimer & Prakash 2016) requir-
ing

Mmax  1

2.82

c2Rmax

G
(5)

and with Eq. (3)

Mthres � 1.23 Mmax. (6)

The lower bound of Mthres given by the measured total
mass of GW170817 is shown as dark blue band. The
radius Rmax of the nonrotating maximum-mass NS is
thus constrained to be larger than 9.26+0.17

�0.03 km.
Instead of using Eq. (1) it may be more realistic to

assume that the remnant was stable for at least 10 mil-
liseconds to yield the observed ejecta properties (high
masses, blue component) (Margalit & Metzger 2017;
Nicholl et al. 2017; Cowperthwaite et al. 2017). In this
case our numerical simulations suggest that Mthres �
Mtot � 0.1 M�. This strengthens the radius constrainst
to R1.6 � 10.68+0.15

�0.04 km and Rmax � 9.60+0.14
�0.03 km.

Figure 2 shows these radius constraints overlaid on
mass-radius relations of di↵erent EoSs available in the
literature. Our new radius constraints for R1.6 and Rmax

derived from GW170817 exclude EoS models describing
very soft nuclear matter.
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Figure 2. Mass-radius relations of di↵erent EoSs with
very conservative (red area) and “realistic” (cyan area) con-
straints of this work for R1.6 and Rmax. Horizontal lines
display the lower bound on Mmax by Antoniadis & et al.
(2013). The dashed line shows the causality limit.

3.3. Discussion: robustness and errors

We took an overall conservative approach in this first
study. Future refinements may strengthen these con-
straints. Our way of inferring NS radii is particularly
appealing and robust because it only relies on (1) a
well measured quantity (total binary mass with reli-
able error bars), (2) a single verifiable empirical relation
(Eqs. (2) or (3)) derived from simulations, and (3) a
clearly defined working hypothesis (delayed/no collapse
of the merger remnant). All assumptions can be fur-
ther substantiated and refined by more advanced models
and future observations, and error bars can be robustly
quantified.

(1) Mass measurement: The total binary mass can
be measured with good accuracy and the error bars are
given with high confidence. We fully propagate the error
through our analysis using the the low-spin prior results
of Abbott et al. (2017). If GW170817 was an asymmet-
ric merger as tentatively suggested by the high ejecta
mass, the true Mtot lies at the upper bound of the error
band and our radius constraints become stronger.

(2) Accuracy of empirical relations for Mthres: The
empirical relations (Eqs. (2) and (3)) are inferred from
hydrodynamical simulations (see Bauswein et al. (2013a,
2016); Bauswein & Stergioulas (2017)) and carry a sys-
tematic error1 and an intrinsic scatter (stemming from
the sample of candidate EoSs, which do not perfectly
fulfill the analytic fit). Mthres has been numerically de-
termined with a precision of ±0.05 M�. The deviations
between the fits and numerical data are on average less
than 0.03 M� and at most 0.075 M�

2. We do not in-
clude this uncertainty in our error analysis because the
numerically determined Mthres of all tested microphysi-
cal candidate EoSs is significantly smaller than the max-
imum of the Mthres(Mmax) sequence for the radius given
by the respective EoS3. Recall that the maxima of the

1 The simulations for determining Mthres and the corresponding
fits employ a conformally flat spatial metric in combination with
a GW backreaction scheme (Oechslin et al. 2007; Bauswein et al.
2013a), which results in a slightly decelerated inspiral (compared
to fully relativistic calculations) and thus leads to a slight over-
estimation of Mthres by ⇠ 0.05 M�. We will quantify this e↵ect
in future work and emphasize that a small overestimation implies
that our radius constraints are conservative.

2 We computed Mthres for six additional EoSs not included
in Bauswein et al. (2013a) to verify this accuracy in particular for
EoS models yielding relatively small NS radii.

3 Within our sample of 17 candidate EoSs the true Mthres

is on average 0.17 M� (0.14 M� for the Rmax sequence) be-
low the maximum Mup

thres of the Mthres(Mmax, R) relation, which
well justifies to neglect the scatter in Eqs. (2) and (3). Three
EoSs (eosAU, WFF1, LS375) are relatively close to the maximum
(⇠ 0.02 M� below Mup

thres). However, these EoS models become
acausal (vsound > c), i.e. unrealistically sti↵, at densities of high-
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Figure 4. Mass-radius relations of di↵erent EoSs with hy-
pothetical exclusion regions (purple areas) from a delayed-
collapse event with Mtot = 2.9 M� and a prompt-collapse
event with Mtot = 3.1 M� employing the methods of this
work (cf. Fig. 3).

netic counterparts are observed and increasingly better
understood theoretically.

Our new method is particularly promising because it
does not require higher SNRs of future GW events and
is thus directly applicable to any new event within the
era of current detectors for which the collapse behavior
can be classified. It provides a robust, complimentary
way of constraining the high-density EoS independent
of e↵orts to measure finite-size e↵ects during the late

Figure 5. Same as Fig. 1 (left panel) hypothetically as-
suming evidence for a remnant life time of ⌧  10 ms in an
event like GW170817. NS properties R16 and Mmax would
be constrained to the light blue area implying tight bounds
on R1.6.

inspiral phase (Faber et al. 2002; Flanagan & Hinderer
2008; Read et al. 2013; Del Pozzo et al. 2013; Abbott
et al. 2017) or prospects to detect oscillations from the
postmerger phase (Bauswein & Janka 2012; Bauswein
et al. 2012, 2014; Clark et al. 2014; Chatziioannou et al.
2017).

Apart from the model-dependent interpretation of the
electromagnetic emission our method only relies on bi-
nary mass measurements and empirical relations de-
scribing Mthres(Mmax, R). Future calculations can fur-
ther corroborate these relations for a larger sample of
candidate EoSs and with more sophisticated models, al-
though it seems unlikely that for instance a detailed in-
corporation of neutrinos or magnetic fields can have a
significant influence on the relations for the threshold
mass. We emphasize the simplicity and robustness of
our constraints as a major advantage.

We demonstrated this robustness with the observation
of GW170817 and its electromagnetic counterpart mak-
ing conservative assumptions throughout, for instance
by assuming an equal-mass merger. Future work should
refine this first study and will yield stronger radius con-
straints. Specifically we refer to the inclusion of mass-
ratio e↵ects and additional information from limits on
the remnant life time. As follow-up to this letter we will
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=> for more details see  
Bauswein, OJ, Janka, Stergioulas, 2017ApJ, 850L, 34B

(also see talk by Luca Baiotti, as well as papers: 
Margalit & Metzger ’17, Rezzolla+ ’17, Ruiz+ ’17, 

Most+18 for independent EOS constraints)



NU-OSCILLATIONS IN POST-MERGER  
BH-TORUS SYSTEMS



Post-Merger BH-Torus

subrelativistic winds 

BH

(r-process) nucleosynthesis

short GRB

�B

ultra- 
relativistic 

outflow

neutrino 
cooling

neutrino 
heating

(directly after its formation)

Role of neutrinos: 
➔ cool torus and impact the accretion rate! 
➔ determine/alter Ye in outflows! 
➔ possibly launch/contribute to GRB jet! 

Kilonova



Post-Merger BH-Torus Remnant

Typical ejecta properties: 

● outflow masses: 
~ 5-20% of torus mass 

● electron fraction: 
    Ye ~ 0.1-0.3 
● entropy per baryon: 
    s ~ 10 – 30 kB 
● velocity: 
    v ~ 0.05– 0.1 c 

● small neutrino-driven 
component 

● dominant viscous 
component

(for NS-torus remnant see Perego ’14, Fujibayashi ’17)

(as obtained in OJ, Bauswein, Ardevol, Goriely, Janka ’15)



IMPACT OF NU-NU OSCILLATIONS ON THE  
NEUTRINO-DRIVEN WIND COMPONENT
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FIG. 8: Panel (a): Neutrino-driven mass ejecta as a function of the weak-interaction freeze-out time tFO for the M3A8m3a5
model. The freeze-out time is approximately equal to the time where Ye reaches the asymptotic value Ye,asym before neutron
capture starts. The largest amount of neutrino-driven ejecta is emitted for t < 35 ms when the disk is protonizing strongly.
Panel (b): Trajectories of the neutrino-driven ejecta in the M3A8m3a5 model on the (x, z) plane. The ⌫e emission surface at
20 ms is also plotted to guide the eye. The color coding of the trajectories indicates the corresponding tFO shown in panel (a).
The trajectories ejected at early times originate closer to the polar region while the later ejecta come from the outer edges of
the torus next to the equatorial plane.

remnants, in this section we explore the role of fla-
vor equilibration on the nucleosynthesis outcome of the
neutrino-driven ejecta.

A. Neutrino driven wind in neutron star merger
remnants

Heavy elements in the neutrino-driven wind of the
post-merger BH–torus remnant are produced in a way
similar to the CCSN neutrino-driven wind: matter re-
combines from free nucleons to form heavy nuclei as the
ejecta expand and cool. The detailed calculation of the
nucleosynthesis process requires solving a large set of
equations describing the nuclear reaction network con-
necting di↵erent nuclei. In this work, we use the estab-
lished nuclear reaction network suitable for the r-process
nucleosynthesis calculation based on the nuclear physics
inputs of Ref. [72]. It contains 7360 nuclei and all rele-
vant nuclear reactions.

Despite the complicated nuclear physics needed to
model the quantitative nucleosynthesis results, there are
a few key quantities that determine the qualitative out-
come (see e.g., [73, 74]), namely the entropy, the ejecta
expansion time scale and, most importantly, the electron
abundance fraction per nucleon

Ye =
Ne

Np + Nn
= Xp +

X

ZA>2

ZA

A
XA , (11)

with Ne (Np, Nn) the net electron (proton, neutron re-
spectively) number density. Xp and XA are the mass
fractions of free protons and nuclei with charge numbers
ZA � 2.

In the early phases of the ejecta expansion when the
temperature T � 1 MeV, matter mostly consists of free
protons and neutrons, the evolution of Ye is then set by
the �-interactions of neutrinos with free neutrons and
protons:

⌫e + n $ p + e
� and ⌫̄e + p $ n + e

+
. (12)

Therefore, the evolution of Ye during this phase can be
approximated as

dYe

dt
' (�⌫e + �e+)Yn,f � (�⌫̄e + �e�)Yp,f , (13)

with �i being the reaction rates and Yn/p,f ⇡ Xn/p the
abundances of free nucleons.

When the temperature drops to T & 1 MeV be-
fore nucleons recombine to 4He, the e

± capture rates
(�e�,e+ / T

5) become much smaller than the neutrino
absorption rates (�⌫e,⌫̄e) and can later on be ignored.
Moreover, when both �⌫e and �⌫̄e become smaller than
the inverse of the radial expansion dynamical timescale
of the ejecta, ⌧

�1

dyn
' vej,r/rej, where vej,r and rej are the

radial velocity and the radius for each given ejecta tra-
jectory, one can define this time as the weak-interaction
freeze-out time, tFO. At tFO, Ye of the trajectory roughly
approaches an asymptotic value Y

asym
e , until much later

when the beta-decay of r-process nuclei sets in to further
raise Ye (see Fig. 9 for a few examples). Note that at
tFO, all the neutrino driven ejecta roughly expand along
the radial directions.

Another quantity which is relevant for the subsequent
discussion is the so-called equilibrium electron fraction,
Y

eq
e , defined by

Y
eq

e =
�⌫e

�⌫e + �⌫̄e

. (14)

• recently (re-)discovered that “fast pairwise  
flavor conversions” can lead to flavor  
equilibration on length scales of O(10cm)  
(e.g. Sawyer+ 05,09’16) 

• take place whenever                          
changes sign in angular space

nu-driven wind properties
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FIG. 4: BH–tours remnant properties for model M3A8m3a5 at 20, 35 and 50 ms (from left to right) as functions of x and z
(assuming cylindrical symmetry around the z-axis). First row: Relative ELN, (n⌫e �n⌫̄e)/n⌫e . Second row: Relative ELN flux
density (F z

⌫e � F z
⌫̄e)/F

z
⌫e along the z direction [see Eq. (1) for the definition]. Third row: Local protonization rate dYe/dt. The

reduced protonization rate as the torus evolves and the di↵erent emission geometry of the n⌫e and n⌫̄e surfaces (red and blue
curves) lead to the growing excess of ⌫e compared to ⌫̄e around the z-axis.

driven ejecta). We, therefore, show in Fig. 3 the matter
density ⇢, the temperature T , the degeneracy parameter
µe/T with µe being the electron chemical potential, and
the ELN (⌘ n⌫e �n⌫̄e), as functions of x and z (assuming
cylindrical symmetry) from top to bottom. Each quan-
tity is shown for three selected snapshots at t = 20, 35
and 50 ms (from left to right) to illustrate the evolution
of the torus conditions. The surfaces where ⌫e and ⌫̄e de-
couple are also shown in red and blue, respectively (see
Sec. II C for more details).

As the torus continuously accretes onto the BH, both
T and ⇢ decrease. Consequently, the size of both neu-
trino surfaces shrinks. However, the electron degeneracy
µe/T in the innermost part of the torus increases from
µe/T < 1 to µe/T ⇠ 1 as the torus evolves and neutrino
cooling becomes more e�cient with decreasing optical
depth. This increase of the electron degeneracy 1 leads
to a relatively larger ratio of the electron capture rate
to the positron capture rate. Since most of the neutri-
nos ending up in the polar region are emitted from this
inner region of the torus, this has consequences on the
ELN above the neutrino surfaces. The bottom panels of
Fig. 3 show that, at 20 ms, the whole region above the
torus is characterized by n⌫̄e > n⌫e . The torus gradually
evolves towards a configuration where n⌫e > n⌫̄e in the
polar region at later times. The main reason for having

1
We note that a local increase of the electron degeneracy is not

inconsistent with the previous statement that this quantity glob-

ally (i.e., averaged over the entire torus) decreases.

a ⌫e excess in the polar region is due to a geometrical
e↵ect. As the ⌫e surface with a conical shape is more
extended than the ⌫̄e surface with nearly the same half-
opening angle (Fig. 3), more ⌫e’s are emitted towards
the polar region than ⌫̄e’s from their respective surfaces.
This results in a ⌫e excess when the torus is only slightly
protonizing at later times. Figure 4 provides more in-
sight into this evolutionary e↵ect as a consequence of the
neutrino transport conditions around the torus. As mat-
ter flows towards the BH, it protonizes (dYe/dt > 0) in
all of the near-surface regions of the torus at all times,
while the high-density inner parts have achieved a steady
state condition (dYe/dt ⇡ 0) or neutronize with a very
low rate.

Nevertheless, only at early times all the volume above
the neutrino surfaces is dominated by the number den-
sities and number fluxes of ⌫̄e (Fig. 4, left panels). In
contrast, at later times (t & 25 ms) a growing conical vol-
ume around the rotation axis develops an excess of ⌫e in
number density and number flux. The reason is two-fold:
First, the decreasing rate of protonization with progress-
ing evolution (compare left and right columns of Fig. 4)
near the torus surface reduces the di↵erence between the
overall higher ⌫̄e number flux compared to the ⌫e number
flux, as well as locally at the neutrino surfaces. Second,
the di↵erent emission geometry of the ⌫e and ⌫̄e surfaces
plays an increasingly more important role: Because the
neutrino surface of ⌫e is more extended, it irradiates the
region around the rotation axis from a wider angle than
the ⌫̄e surface does. Both e↵ects combined lead to the
growing excess of ⌫e compared to ⌫̄e around the z-axis.

In the BH-torus model M3A8m3a5, the transition be-
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FIG. 6: Electron neutrino lepton number distribution as a function of cos ✓ and � for di↵erent (x, z) points above the ⌫e surface
for the model M3A8m3a5 at 20 ms [panel (a)–(c)], 35 ms [panel (d)–(f)] and 50 ms [panel (g)–(i)]. In the blue (red) shaded
areas, �⌫e � �⌫̄e < 0 (�⌫e � �⌫̄e > 0). The white regions mark the angular directions that do not cross the neutrino emitting
surfaces and therefore the electron lepton number is zero.

distribution potential g(v), by applying the ray-tracing
method (see e.g., Appendix A in Ref. [42]) 2.

Figure 6 shows the resulting ELN distribution as a
function of cos ✓ and � (✓ is the angle relative to the
z-direction, � the angle relative to the x-direction) in
representative locations close to the inner [panel (a), (d),
(g)], middle [panel (b), (e), (h)], and outer [panel (c), (f),
(i)] region above the ⌫e-surface, using the procedure de-
scribed above for the model M3A8m3a5 at 20, 35 and 50
ms. The red and blue shaded areas distinguish between
regions where the ELN potential is positive and nega-
tive, respectively. The angular space where no neutrinos
arrive from the emitting surfaces are left in white.

One sees from Fig. 6 that, as the torus protonizes less,

2
We here have neglected the neutrino ray bending e↵ect due to

general relativity. However, this e↵ect should be minor in most

of the regions, except those immediately next to the BH.

the stronger ⌫e emission from the inner torus leads to a
smaller solid-angle where g(v) < 0 for the locations at the
inner region. In particular, at later times, e.g. t = 50 ms,
the ELN crossing in the inner region vanishes entirely [see
panel (g)]. On the other hand, due to the persistently
larger ⌫̄e emission in the outer torus, the ELN crossing
still occurs for locations in the middle and outer part
above the ⌫e-surface.

We note here that, di↵erent from Ref. [42] which as-
sumes constant neutrino number densities across their
neutrino emitting surfaces, n⌫e and n⌫̄e in this work are
location dependent (see Fig. 5). Therefore, g(v) is in gen-
eral not uniform. The color shading in Fig. 6 is meant to
only illustrate the structure of the ELN crossing.

One should also expect neutrinos to stream in the neg-
ative cos ✓ direction for locations above the ⌫e emitting
surface because of projection e↵ects due to the toroidal
shape of the remnant. Moreover, a non-zero neutrino
distribution in the negative cos ✓ direction should be also
expected due to neutrino scattering that results in the

• recently (re-)discovered that “fast pairwise  
flavor conversions” can lead to flavor  
equilibration on length scales of O(10cm)  
(e.g. Sawyer+ 05,09’16) 

• take place whenever                          
changes sign in angular space 
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• recently (re-)discovered that “fast pairwise  
flavor conversions” can lead to flavor  
equilibration on length scales of O(10cm)  
(e.g. Sawyer+ 05,09’16) 

• take place whenever                          
changes sign in angular space 

• equilibration reduces effect of neutrinos  
to increase Ye 

• more neutron-rich r-process material  
synthesized 

• could be relevant also for HMNS  
remnants of NS mergers
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FIG. 10: Final nucleosynthesis outcome shown by mass frac-
tion as a function of the nuclear mass number for the same
three selected trajectories shown in Fig. 9. The cases with
(without) flavor equilibration are plotted with the thick (thin)
lines. Flavor equilibration results in the production of ele-
ments with larger A.

Figure 11 shows the ejecta masses as a function of the
asymptotic Y

asym
e as well as the mass fraction for all the

neutrino driven trajectories shown in the right panel of
Fig. 8 for the cases with and without flavor equilibra-
tion. As evident from the top panel of Fig. 11, the even-
tual occurrence of flavor equipartition greatly changes
the Y

asym
e distribution of the ejecta, from uniformly dis-

tributed in the range Ye 2 [0.35, 0.5] to being peaked
around Ye ⇠ 0.25 with a tail distribution reaching ⇠ 0.5.

The overall production of heavy elements is therefore
shifted from abundance peaks around A ⇠ 80 to A ⇠ 130,
as shown in the bottom panel of Figure 11. In addition,
the production of nuclei above A ⇠ 130 is enhanced by
more than a factor of a thousand 4.

4
Note that for the no-oscillation case, the production of nuclei is

slightly di↵erent with respect to Fig. 13 of [24]. This is due to

the fact that we ignore ejecta with tFO < 10 ms from the torus

in this work, as the torus is still going through an artificially high

⌫e emission for tFO < 10 ms [24]. By including the first 10 ms of

the neutrino driven ejecta, we can indeed reproduce the results in

[24], except for small di↵erences due to di↵erent nuclear physics

inputs.
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FIG. 11: Top panel: Y asym

e distribution with (black thick-
solid) and without (orange thin-dashed) flavor equilibration.
Bottom panel: The corresponding mass fraction X(A) as a
function of mass number A for the whole neutrino-driven
ejecta. Because of flavor conversions, the element production
shifts towards elements with heavier mass number.

Our explorative study suggests that fast pairwise con-
versions may indeed greatly a↵ect the heavy element pro-
duction in the neutrino-driven wind of the merger rem-
nant and strongly justifies further work in this direction.
Particularly, the enhancement on the production of lan-
thanides and the third-peak nuclei can be substantial.
This can potentially lead to interesting observational con-
sequences on the kilonova (macronova) ligthcurve, if the
neutrino-driven wind dominates the polar ejecta. For
example, observations of the kilonova associated to the
GW170817 event suggest blue (high Ye) ejecta in the po-
lar direction. Our results may support the interpretation
that this observation points to a massive NS remnant
that was stable for some time before collapsing to BH
with some delay [77]. In fact, the specific spectrum of
the electromagnetic signal may sensitively depend on the
fraction of lanthanides [78, 79]. If this should be the case,
an increasing number of face-on observations of the kilo-
nova ligthcurves along with theoretical improvements in
the modeling of binary mergers may also be able to put
indirect constraints on fast flavor conversions and neutri-
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When the neutrino irradiation is very strong then Ye may
reach Y

eq
e before the freeze-out. Equation (14) can be

easily derived from Eq. (13) by assuming dYe/dt = 0,
neglecting �e�,e+ , and taking Yn,f = 1�Yp,f = 1�Ye [73].
In the typical CCSN neutrino-driven wind, this condition
generally holds as the ejecta overcome the gravitational
potential of the proto-neutron star by neutrino energy
deposition. However, in the next section, we will see
that it is not generally true for the neutrino-driven wind
from post-merger BH-torus remnants, as matter is more
loosely bound in this case.

The amount of the neutrino-driven ejecta for the
M3A8m3a5 model is shown as a function of tFO in the
left panel of Fig. 83. Note that we have used for tFO

the same time coordinate as from the hydrodynamical
simulation of model M3A8m3a5. The trajectories for all
the neutrino-driven ejecta on the (x, z) plane are plotted
in the right panel of Fig. 8. First, one sees that most
of the neutrino-driven ejecta have the freeze-out time
tFO ' 15 � 40 ms. Secondly, from the color coding, one
can see that the trajectories ejected at early times orig-
inate mainly from regions next to the polar axis while
later ejecta are coming from the outer edges of the torus
next to the equatorial plane.

As the flavor instability exists at any point above the ⌫e

surface at early times, and the outer part above the torus
at later times, most of the neutrino-driven ejecta with
tFO . 50 ms will be influenced by neutrinos that stream
through the unstable regions (see Fig. 7 and Sec. III B for
comparison). As a consequence, we will assume flavor
equilibration [see Eq. (10)] happens for neutrino fluxes
on ejecta trajectories at t  50 ms in the following.

B. Impact of flavor equilibration on the element
production

We now explore the impact of flavor equilibration
on the nucleosynthesis outcome of the neutrino-driven
ejecta. Since the muon and tau (anti)neutrinos are pro-
duced only in the very innermost and dense regions of the
torus, their luminosities are about ten times lower than
the ones of ⌫e and ⌫̄e [28, 75, 76]. We here neglect the
non-electron flavors and perform nucleosynthesis calcula-
tions by assuming that, when flavor equilibration occurs
[see Eq. 10], both the ⌫e and ⌫̄e capture rates on nucle-
ons are reduced to 1/3 of their original values without
oscillations.

To discuss the impact of flavor equilibration on the
electron fraction Ye, we first examine three representa-
tive trajectories with tFO = 16, 25 and 31 ms. The top
panel of Fig. 9 shows the selected trajectories in the (x, z)

3
For a comparison of the mass distribution histograms between

the neutrino-driven ejecta and the viscously-driven ones, we refer

the reader to Fig. 9 of Ref. [24].
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FIG. 9: Panel (a): Three selected neutrino-driven trajecto-
ries in the (x, z) plane, labeled by their respective tFO. The
⌫e emission surface at 20 ms is also plotted to guide the eye.
Panel (b): Electron fraction Ye along the three selected tra-
jectories as a function of time; Ye in the cases with (without)
flavor equilibration is plotted with the thick (thin) line.

plane. The bottom panel of Fig. 9 shows the evolution of
Ye with and without flavor equilibration (thick and thin
lines respectively). The earlier ejecta with tFO = 16 ms
originate from the region close to the pole and, therefore,
are exposed to stronger neutrino fluence. As a result,
despite the strong reduction of the neutrino absorption
rates, Ye(tFO) ⇡ Y

eq
e . This explains why a reduction of

the neutrino rates due to flavor conversions has only little
e↵ect on the Ye evolution. For the later ejecta, such as
the ones with tFO = 25 and 31 ms, the asymptotic value
of Ye, Y

asym
e , never reaches Y

eq
e even in the case without

oscillations. Thus, the reduction of the neutrino capture
rates due to flavor equilibration dramatically lowers the
asymptotic value of Ye (Y asym

e ) from ⇠ 0.41 and 0.34
to ⇠ 0.3 and 0.23, respectively. Note that Ye for the
tFO = 25 ms trajectory shows a slight rise at t ⇠ 80 ms;
this is due to the �-decays of neutron-rich nuclei during
and after the r-process.

Figure 10 shows the final nucleosynthesis outcome of
these three trajectories. The mass fraction X(A) is plot-
ted as a function of the nuclear mass number A. As a
consequence of the Ye evolution shown in Fig. 9, there is
only little change of the nucleosynthesis pattern to the
earliest trajectory with tFO = 16 ms, while the produced
heavy nuclei in the later ejecta are shifted from peaking
around A ⇠ 80 to A & 130, and even reaching the third
peak A ⇠ 195 for the case with tFO = 31 ms.



CAN NEUTRINO PAIR ANNIHILATION  
DRIVE SGRB JETS?



➔ first detected 1967 by VELA satellite 

➔ source is moving highly relativistically 
➔ natural suggestion: jet from rotating compact object 

➔ long bursts (T>2s): connection to death of massive 
stars 

➔ short bursts (T<2s) still mysterious, most likely from 
NS mergers 

Gamma-Ray Bursts

(NASA)



 Popular Central Engine Scenarios

➔ neutrino-pair annihilation
- neutrinos tap gravitational energy of disk 
  e+-e- pairs thermalize → thermal fireball 
- efficiency of converting gravitational energy into 
  jet energy? 
- baryon loading in the funnel? 

➔  Blandford-Znajek process 
- B-field taps rotation energy of central BH 
   → Poynting-dominated jet 
- efficient only for large-scale poloidal B-fields 
- can large-scale fields be produced and 
  sustained? MRI? Dynamo? 

➔  magnetar spin-down emission 
- B-field taps rotation energy of central NS 
  → Poynting dominated jet 
- is dipole model appropriate? 
- consistent with short burst timescale? 

(Hirose+ '04)

(Metzger+ '11)



 Popular central engine scenarios
➔ neutrino-pair annihilation

- neutrinos tap gravitational energy of disk 
  e+-e- pairs thermalize → thermal fireball 
- efficiency of converting gravitational energy into 
  jet energy? 
- baryon loading in the funnel? 

Tested using for the first time 
time-dependent neutrino-
hydrodynamics simulations

(OJ, Obergaulinger, Janka, Bauswein 
ApJ, 816, L30)

Necessary conditions for the jet to explain sGRB: 
• Total energy: E~1048–1050 erg 

• Lorentz factor: Γ~10-100



Geometry of Dynamical Ejecta

NS-NS NS-BH

(Bauswein et. al. '13) (Just et. al. '15)

(Hotokezaka et. al. '13)



Symmetric NS-NS Merger

➔ baryon loading in the funnel too high, no jet launched



Asymmetric NS-NS Merger

➔ jet is successfully launched, but then dissipates most of its kinetic 
energy into cloud of dynamical ejecta



NS-BH Merger
➔ no dynamical ejecta in polar regions → jet can expand freely 
➔ however, energy too low to explain majority of sGRBs



Merger Summary

➔ found new robust radius constraints that can be imposed as soon as a distinction 
between prompt and delayed collapse is possible 

➔ delayed collapse -> lower radius limit, prompt collapse -> upper limit 

➔ probably delayed collapse for GW170816 -> R16 > 10.7 km 

➔ “fast pairwise nu-oscillations” might have significant impact on post-merger nu-
irradiated outflows 

➔ GRB central engine is probably not solely driven by nu-nu pair annihilation 


