

Workshop "Physics of core-collapse supernovae and compact star formations", Mar. 19–Mar.21, 2018, Waseda University, Japan

The properties of neutron star in the relativistic central variational method

Jinniu Hu (胡 金牛)

School of Physics, Nankai University

Outline

□ Introduction

Relativistic variational method

Neutron star with variational method

□ Summary

NN interaction in free space

> Effective nucleon-nucleon interaction NN interaction in nuclear medium

The nucleon-nucleon interaction

X. Xia et al., Atomic Data and Nuclear Data Tables, 121(2018)1

剧大

20/03/2018

The NN scattering data

R. Navarro Pérez, J. E. Amaro, and E. Ruiz Arriola, Phys. Rev. C 89(2014)064006

阁大学

20/03/2018

> Realistic nucleon-nucleon interaction Meson exchange potential models from the NN scattering data ➢Reid potential R.V. Reid, Ann. Phys. (N.Y.) 50(1968)411 Argonne V18 potential R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51(1995)38 ➤CD Bonn potential R. Machleidt, Phys. Rev. C 63(2001)024001 >N⁴LO chiral potential D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91 (2015) 014002 E. Epelbaum, H. Krebs, U.-G. Meissner, Phys. Rev. Lett. 115 (2015) 122301

D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C 96 (2017) 024004

>Lattice QCD potential

N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett. 99(2007)022001

國南國大學

Realistic NN interaction for symmetric nuclear matter with mean-field theory

20/03/2018

Ab initio calculation

>Variational methods

A.Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev. C 58 (1998)180 H. Togashi and M. Takano, Nucl. Phys. A 902(2013)53

Brueckner-Hartree-Fock (BHF) method
Z. H. Li, et al., Phys. Rev. C 74 (2006)047304

Self-consistent Green's function method
A. Carbone, A. Polls, A. Rios, Phys. Rev. C 88 (2013)044302

Coupled-cluster theory
G. Hagen, at al., Phys. Rev. C 89 (2014) 014319

Many-body perturbation theory
C. Drischler, V. Soma, A. Schwenk, Phys. Rev. C 89 (2014)025806.

Relativistic Brueckner-Hartree-Fock (RBHF) method R.Brockmann and R. Machleidt, Phys. Rev. C 42 (1990)1965.

20/03/2018

Different ways to treat cluster expansion

Lowest order constrained variational (LOCV) method

M. Modarres, A. Tafrihi, A. Hatami, Nucl. Phys. A 879 (2012) 1.

Fermi hypernetted chain (FHNC) method A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58 (1998) 1804. (APR EOS)

Quantum Monte Carlo (QMC) method 5. Gandolfi, et al., Phys. Rev. C 79 (2009) 054005

Non-Relativistic calculations

A. Tafrihi, M. Modarres, JPC 702 (2016) 012015.

20/03/2018

Jinniu Hu

Non-relativistic calculations

JH, Y. Zhang, E. Epebaum, U.-G. Meissner, and J. Meng, Phys. Rev. C 96(2017)034307

20/03/2018

Relativistic effect VS. TBF 剧大

20/03/2018

Outline

□ Introduction

Relativistic variational method

Neutron star with variational method

□ Summary

The key of ab initio calculations in nuclear matter

Real wave function Ψ

Non-interacting wave function $\Psi=F\Phi$

Variational method

$$\frac{\partial}{\partial \Psi} \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} = 0$$

20/03/2018

Correlation functions

Brueckner Hartree-Fock theory

Z. H. Li, et al., Phys. Rev. C 74 (2006)047304

$$\Psi = \left(1 - \frac{Q}{e}G\right)\Phi$$

Variational method

A.Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev. C 58 (1998)1804

$$\Psi = \left(S\prod_{i < j} F_{ij}\right)\Phi$$

Green function method

S. Gandolfi, et al., Phys. Rev. C 79 (2009) 054005

$$\Psi = \sum c_i e^{-(H - E_0)\tau} \Phi$$

Unitary correlation op^2 rator method

H. Feldmeier, T.Neff, R.Roth, and J.Schnack, et al., Nucl. Phys. A632 (1998) 61

$$\Psi = U\Phi$$

20/03/2018

The correlation functions in variational method

$$F_{ij} = \sum_{p} f_{ij}^{p}(r) O^{p}$$
Spin, isospin
Jastrow function

For example,

$$f_{ij} = \sum_{t=0}^{1} \sum_{\mu} \sum_{s=0}^{1} \left[f_{Cts}^{\mu}(r_{ij}) + s f_{Tt}^{\mu}(r_{ij}) S_{Tij} + s f_{SOt}^{\mu}(r_{ij}) (\boldsymbol{L}_{ij} \cdot \boldsymbol{s}) \right] P_{tsij}^{\mu}$$

H. Togashi and M. Takano, Nucl. Phys. A 902(2013)53

Cluster expansion

The expectation values of Hamiltonian

J. Morales, et al. Phys. Rev. C 66(2002)054308

$$E = T_F + \frac{\left\langle \Phi_A(k_F) \middle| \left[S\prod_{i < j} F_{ij} \right] (H - T_F) \left[S\prod_{i < j} F_{ij} \right] \middle| \Phi_P(k_F) \right\rangle}{\left\langle \Phi_A(k_F) \middle| \left[S\prod_{i < j} F_{ij} \right] \left[S\prod_{i < j} F_{ij} \right] \middle| \Phi_P(k_F) \right\rangle}$$

Cluster expansion in variational energy

$$F_{ij}^{c} = \left[f_{ij}^{c}(r)\right]^{2} - 1$$

$$F_{ij}^{p>1} = 2f_{ij}^{c}(r)f_{ij}^{p}(r)O_{ij}^{p}$$

$$F_{ij}^{p>1,q>1} = f_{ij}^{p}(r)f_{ij}^{q}(r)O_{ij}^{p}O_{ij}^{q}$$

Hamiltonian

$$\begin{split} H &= \int \mathrm{d}^{3}\mathbf{x}\overline{\psi}(\mathbf{x})(-\mathrm{i}\gamma\cdot\nabla+M_{N})\psi(\mathbf{x}) + \frac{1}{2}\sum_{\substack{i=\sigma,\delta,\\\eta,\pi,\omega,\rho}} \int \mathrm{d}^{3}\mathbf{x}'\mathrm{d}^{3}\mathbf{x}\overline{\psi}(\mathbf{x}')\overline{\psi}(\mathbf{x})\frac{\Gamma_{i}(1,2)}{m_{i}^{2}+\mathbf{q}^{2}}\psi(\mathbf{x})\psi(\mathbf{x}').\\ &\Gamma_{\sigma}(1,2) = -g_{\sigma}^{2},\\ &\Gamma_{\delta}(1,2) = -g_{\sigma}^{2}\tau_{1}\cdot\tau_{2},\\ &\Gamma_{\eta}(1,2) = -\left(\frac{f_{\eta}}{m_{\eta}}\right)^{2}(q_{\gamma}\gamma_{5})_{1}(q_{\gamma}\gamma_{5})_{2}\tau_{1}\cdot\tau_{2},\\ &\Gamma_{\pi}(1,2) = -\left(\frac{f_{\pi}}{m_{\pi}}\right)^{2}(q_{\gamma}\gamma_{5})_{1}(q_{\gamma}\gamma_{5})_{2}\tau_{1}\cdot\tau_{2},\\ &\Gamma_{\omega}(1,2) = g_{\omega}^{2}\gamma_{\mu}(1)\gamma^{\mu}(2),\\ &\Gamma_{\rho}^{V}(1,2) = g_{\rho}^{2}\gamma_{\mu}(1)\gamma^{\mu}(2)\tau_{1}\cdot\tau_{2},\\ &\Gamma_{\rho}^{T}(1,2) = \left(\frac{f_{\rho}}{2M_{N}}\right)^{2}q_{\nu}\sigma^{\mu\nu}(1)q^{\lambda}\sigma_{\mu\lambda}(2)\tau_{1}\cdot\tau_{2},\\ &\Gamma_{\rho}^{VT}(1,2) = \mathrm{i}\left(\frac{g_{\rho}f_{\rho}}{M_{N}}\right)\gamma_{\mu}(2)\sigma^{\mu\nu}q_{\nu}(1)\tau_{1}\cdot\tau_{2}, \end{split}$$

20/03/2018

Bonn potentials

R. Brockmann, R. Machleidt, Phys. Rev. C 42 (1990)1965.

20/03/2018

The energy with correlation function

 $E_c = \frac{\langle \Phi | F^{\dagger} H F | \Phi \rangle}{\langle \Phi | F^{\dagger} F | \Phi \rangle}$

Relativistic plane wave function

Central correlation function

$$F = \prod_{i < j}^{A} f(r_{ij})$$

Constraint of correlation function

$$\int \mathrm{d}^3 \mathbf{r}_{ij} [f^2(r_{ij}) - 1] = 0$$

Variational method

Correlated energy density

$$\mathcal{E}_c = \frac{E_c}{\Omega} = \frac{1}{\Omega} \langle \Phi | \widetilde{H} | \Phi \rangle$$

$$= \langle T \rangle + \langle T_c \rangle + \langle V \rangle,$$

Correlated Hamiltonian

$$\widetilde{H} = \sum_{i}^{A} T_{i} + \frac{1}{2} \sum_{i,j}^{A} \widetilde{V}_{ij}$$

= $\sum_{i}^{A} T_{i} + \frac{1}{2} \sum_{i,j}^{A} \{f^{\dagger}(r_{ij})[T_{i} + T_{j} + V_{ij}]f(r_{ij}) - (T_{i} + T_{j})\}.$

20/03/2018

The form of correlation function

$$f(r) = 1 - (c_0 + c_1 r + c_2 r^2 + c_3 r^3) e^{-c_4 r}$$

Variational method

$$\frac{\partial \mathcal{E}_c}{\partial c_i} = 0$$

阁大

20/03/2018

ρ (fm ⁻³)	E/A (MeV)	K (MeV)	a_4 (MeV)	T_c/A (MeV)
0.192	-11.66	264	37.88	6.57

副大

20/03/2018

JH, H. Toki and H. Shen, Jour. Phys. G. 38(2011)085105

20/03/2018

Asymmetric nuclear matter 颜 南 武 大 學

JH, H. Toki and H. Shen, Jour. Phys. G. 38(2011)085105

20/03/2018

Kinetic energy correlation ()満 刻 大 学

JH, H. Toki and H. Shen, Jour. Phys. G. 38(2011)085105

20/03/2018

Outline

□ Introduction

Relativistic variational method

Neutron star with variational method

□ Summary

Lagrangian of leptons

$$L = \sum_{l} \bar{\psi} (i \gamma_{\mu} \partial^{\mu} - m_{l}) \psi_{l}$$
 $l_{:}$ e, m

Beta equilibrium conditions

$$\mu_p = \mu_n - \mu_e$$
$$\mu_\mu = \mu_e$$

Charge neutrality conditions

$$\rho_p = \rho_e + \rho_\mu$$

Equation of state

JH, H. Shen, and H. Toki, Phys. Rev. C,95 (2011)025804

20/03/2018

Equation of state

Neutron star properties

20/03/2018

Ratio of particles

JH, H. Shen, and H. Toki, Phys. Rev. C,95 (2011)025804

20/03/2018

URCA process

JH, H. Shen, and H. Toki, Phys. Rev. C,95 (2011)025804

20/03/2018

Effective masses

20/03/2018

The correlation on kinetic energy

JH, H. Shen, and H. Toki, Phys. Rev. C,95 (2011)025804

阁大.

Outline

□ Introduction

Relativistic variational method

Neutron star with variational method

□ Summary

Summary and Respectives

We extended the variational method to relativistic framework with central correlation

The properties of nuclear matter in relativistic variational method could be comparable with RBHF theory

We also applies such methods on the study of neutron star. The maximum mass of neutron star is around 2.18 solar mass.

The more correlation functions will included.