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The nucleon-nucleon interaction

➢ Realistic nucleon-nucleon (NN) interaction: 
     NN interaction in free space 

➢ Effective nucleon-nucleon interaction 
     NN interaction in nuclear medium 
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The nucleon-nucleon interaction

X. Xia et al., Atomic Data and Nuclear Data Tables, 121(2018)1
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Fig. 3: (Color online) 9035 bound nuclei from O (Z = 8) to Z = 120 predicted by RCHB theory with PC-PK1 [63]. For the 2284 nuclei

with mass measured, the relative binding energy di↵erences between the data and RCHB calculations are scaled by colors. Furthermore, the

nucleon drip lines predicted by mass table TMA [23] , HFB-21 [18], FRDM [7], WS3 [11], UNEDF [20], NL3* [24, 25], and also PC-PK1

without pairing correlations are plotted for comparison.

Fig. 4: (Color online) The rms deviation of binding energy � in RCHB calculations compared with the average quadrupole deformation

parameter h�
2

i = (
Pn0

i |�i
2

|)/n0 for each isotopic chain as a function of the proton number (a), and for each isotonic chain as a function of

the neutron number (b). The deformation parameters for even-even nuclei are from 3DRHB [91] calculations with PC-PK1.

To investigate the deformation e↵ects, the rms deviation of binding energy � in RCHB calculations is compared

with the average quadrupole deformation parameter h�2i = (
Pn0

i |�i
2|)/n0 for each isotopic chain in Fig. 4, where the

deformation parameters for even-even nuclei are from 3DRHB [91] calculations with PC-PK1. It can be seen that, for

isotopic chains, the rms deviations are small at the closed shell Z =20, 28, 50, 82, and large around the middle of two

closed shells. Furthermore, a similar tendency for the average deformations is also found in the lower panel of Fig. 4(a).

Analogously, for isotonic chains, the variation of � is similar to that of h�2i as well. These correspondences between the

� and h�2i indicate that taking the deformation e↵ects into account in the future will improve the agreement with the

13
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The nucleon-nucleon interaction
➢ Effective nucleon-nucleon interaction 

       Density functional theory from the properties of nuclear matter or finite nuclei 

➢ Skyrme interaction (zero range) 

      J. W. Negele and D. Vautherin, Phys. Rev. C 5(1972)1472 

➢ Gogny interaction  (Finite range) 

   J. Decharge and D. Gogny, Phys. Rev. C 21(1980)1568 

➢ Relativistic mean field (RMF) (meson exchange force) 

      H. P. Duerr, Phys. Rev.  103(1956)469, NL3,TM1,DD-M2…… 

➢ Relativistic Hartree Fock (RHF)  
      A. Bouyssy, J. -F Mathiot, and N. Van Giai, Phys. Rev. C 36(1987)380, PKO, PKA,... 

➢ Point coupling interaction  (zero range) 

       B.A. Nikolaus, T. Hoch, and D.G. Madland, Phys. Rev. C 46(1992)1757, PC-PK1, 
       DD-PC…… 
 ...
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The NN scattering data
R. Navarro Pérez, J. E. Amaro, and E. Ruiz Arriola, Phys. Rev. C 89(2014)064006  
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The realistic NN interaction

➢ Realistic nucleon-nucleon interaction 

       Meson exchange potential models from the NN scattering data 
➢Reid potential                          
   R.V. Reid, Ann. Phys. (N.Y.) 50(1968)411 
➢Argonne V18 potential 
   R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51(1995)38 
➢CD Bonn potential 
   R. Machleidt, Phys. Rev. C 63(2001)024001 

➢N4LO chiral potential
  D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91 (2015) 014002  E. Epelbaum, H. Krebs, U.-G. Meissner, Phys. Rev. Lett. 115 (2015) 122301 
    D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C 96 (2017) 024004 

➢Lattice QCD potential  
   N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett. 99(2007)022001 
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The nucleon-nucleon interaction

➢on-shell behavior
Complications

4

NN interaction is not unique

•Non-uniqueness of nucleon forces ✘

...but phase-shift equivalent!
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S. Aoki, et al. Comput. Sci. Dis. 1 015009 (2008)

➢Phase shifts
Complications

4

NN interaction is not unique

•Non-uniqueness of nucleon forces ✘

...but phase-shift equivalent!
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Realistic NN interaction

Realistic NN interaction for symmetric nuclear 
matter with mean-field theory

Bonn A potential
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Ab initio calculation
➢Variational methods
A.Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev. C 58 (1998)180 
H. Togashi and M. Takano, Nucl. Phys. A 902(2013)53  

➢Brueckner-Hartree-Fock (BHF) method
Z. H. Li, et al., Phys. Rev. C 74 (2006)047304 

➢Self-consistent Green’s function method 
 A. Carbone, A. Polls, A. Rios, Phys. Rev. C 88 (2013)044302

➢Coupled-cluster theory 
 G. Hagen, at al., Phys. Rev. C 89 (2014) 014319

➢Many-body perturbation theory
 C. Drischler, V. Soma, A. Schwenk, Phys. Rev. C 89 (2014)025806. 

➢Relativistic Brueckner-Hartree-Fock (RBHF) method
 R.Brockmann and R. Machleidt, Phys. Rev. C 42 (1990)1965. 
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Cluster expansion

Different ways to treat cluster expansion  

Lowest order constrained variational (LOCV) method 

Fermi hypernetted chain (FHNC) method 

Quantum Monte Carlo (QMC) method 

A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58 (1998) 1804. 
     (APR EOS)

S. Gandolfi, et al., Phys. Rev. C 79 (2009) 054005

M. Modarres, A. Tafrihi, A. Hatami, Nucl. Phys. A 879 (2012) 1.
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Non-Relativistic calculations
A. Tafrihi, M. Modarres, JPC 702 (2016) 012015.

FHNCQMC

LOCV
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Non-relativistic calculations

CAR1058C PRC August 31, 2017 13:52

NUCLEAR MATTER PROPERTIES WITH NUCLEON- . . . PHYSICAL REVIEW C 00, 004300 (2017)

FIG. 2. Predictions for the EOS of SNM (left column) and PNM
(right column) based on the chiral NN potentials of Refs. [35,36]
for R = 0.9 fm (upper row) and R = 1.0 fm (lower row) along with
the estimated theoretical uncertainties. Open rectangles visualize the
empirical saturation point of symmetric nuclear matter.

momentum [35]. It is less obvious how to estimate the292

momentum scale p for finite nuclei. In [41], the expansion293

parameter for light nuclei was assumed to be Q = Mπ/"b.294

On the other hand, in heavy nuclei one expects the scale p to295

increase as a consequence of the Pauli principle. For infinite296

nuclear matter, it seems most natural to estimate p by the297

corresponding Fermi momentum, which is directly related to298

the density and sets the inverse distance scale in the system.299

The validity of such an estimation may eventually be tested300

within a Bayesian approach along the lines of Refs. [70]. Such301

an analysis, however, goes beyond the scope of our work.302

Here and in what follows, we assume p to be given by the303

corresponding Fermi momentum.304

The algorithm proposed in [35] has been adjusted in305

Ref. [41] to enable applications to incomplete few- and many-306

nucleon calculations based on two-nucleon forces only. Here307

and in what follows, we use the method as formulated in that308

paper, which was also employed in [42]. The breakdown scale309

of the nuclear chiral EFT was estimated to be "b ≃ 600 MeV310

[35].2 The Bayesian analysis of the chiral EFT predictions311

for the NN total cross section of Ref. [70] has revealed that312

the actual breakdown scale may even be a little higher than313

"b ≃ 600 MeV for R = 0.9 fm.314

In Fig. 2, we show the results for the EOS for SNM315

and PNM, including the estimated theoretical uncertainties316

at various orders of the chiral expansion for the most accurate317

versions of the NN potentials with R = 0.9 fm and R =318

1.0 fm [35,36]. The expansion parameter Q at a given density319

is estimated by identifying the momentum scale p with the320

Fermi momentum kF, which is related to the density ρ via ρ =321

2k3
F/(3π2) [ρ = k3

F/(3π2)] for SNM (PNM), and assuming322

2To account for increasing finite-cutoff artifacts using softer
versions of the chiral forces, the lower values of "b = 500 and
400 MeV were employed in calculations based on R = 1.1 fm and
R = 1.2 fm, respectively.

"b = 600MeV. At the saturation density, the achievable 323

accuracy of the chiral EFT predictions for the energy per 324

particle may be expected to be about ±1.5 MeV (±0.3 MeV) 325

for SNM and ±2 MeV (±0.7 MeV) for PNM at N2LO (N4LO). 326

Notice that the expected accuracy at N4LO is significantly 327

smaller than the current model dependence for these quantities. 328

We further emphasize that the presented estimations should 329

be taken with some care due to the nonavailability of 330

complete calculations beyond NLO. More reliable estimations 331

of the theoretical uncertainty using the approach of [35] will 332

be possible once the corresponding three- and four-nucleon 333

forces are included. Furthermore, we also do not consider the 334

uncertainty associated with the approximations from the BHF 335

theory in this work. 336

Our results confirm the conclusions of [59] that cutoff 337

variation does not provide an adequate way for estimating 338

the uncertainties in the calculations of the nuclear EOS. 339

As discussed in [35], the residual cutoff dependence of 340

observables may generally be expected to underestimate the 341

theoretical uncertainty at NLO and N3LO, which is consistent 342

with our results. Further, the spread of results for different 343

values of R at N4LO at nuclear saturation density is about 344

0.3 MeV (0.7 MeV) for SNM (PNM), which is similar to the 345

estimated uncertainty at this order. However, we refrain from 346

drawing more definite conclusions on the cutoff dependence 347

based on the incomplete calculations. 348

Finally, we have also quantified the achievable accuracy 349

of the theoretical determination of the symmetry energy asymm 350

and the slope parameter L, defined as L = 3ρ ∂(E/A)SNM/∂ρ, 351

at the empirical saturation density. These important quantities 352

have been constrained by the available experimental informa- 353

tion on, e.g., neutron skin thickness, heavy ion collisions, and 354

dipole polarizabilities leading to the ranges of 29 ! asymm ! 355

33 MeV and 40 ! L ! 62 MeV [71–73]. In Fig. 3, we show 356

our results for these quantities using the NN potentials from 357

LO to N4LO along with the estimated theoretical uncertainties. 358

Especially for the slope parameter, a complete calculation at 359

N4LO would yield a theoretical prediction with high accuracy. 360

IV. SUMMARY AND CONCLUSIONS 361

In summary, we calculated the equations of state (EOSs) of 362

SNM and PNM with the state-of-the-art chiral NN potentials 363

from LO to N4LO in the framework of Brueckner-Hartree- 364

Fock theory. At N4LO, the EOS of SNM has saturation points 365

for all employed cutoff values, with the corresponding satura- 366

tion densities and binding energies per particle being within 367

the ranges 0.28 to 0.40 fm−3 and −17.14 to − 23.28 MeV, 368

respectively. These values are compatible with the ones based 369

on the phenomenological high-precision potentials such as 370

the AV18 potential. The symmetry energy and the slope 371

parameter at the saturation density are found to be in the 372

ranges asymm = 27.9–30.5 MeV and L = 49.4–55.0 MeV, 373

respectively, using the N4LO potentials with the cutoff in the 374

range R = 0.8–1.2 fm. 375

We have also estimated the achievable theoretical accuracy 376

at various orders in the chiral expansion using the novel 377

approach formulated in Refs. [35,41] and discussed the 378

convergence of the chiral expansion. Similar to [59], we find 379

004300-5

JH, Y. Zhang, E. Epebaum, U.-G. Meissner, and J. Meng, Phys. Rev. C 96(2017)034307 
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Relativistic effect VS. TBF

BHF

BRIEF REPORTS PHYSICAL REVIEW C 74, 047304 (2006)

and single-particle energies in the Bethe-Goldstone equation
has been shown to introduce errors well below 1 MeV for the
binding energy at saturation [19].

Concerning the inclusion of three-body forces in the BHF
approach, we use the formalism developed in Refs. [5–7],
namely a microscopic model based on meson exchange with
intermediate excitation of nucleon resonances (Delta, Roper,
and nucleon-antinucleon). The meson parameters in this
model are constrained to be compatible with the two-nucleon
potential, where possible.

For the use in BHF calculations, this TBF is reduced to
an effective, density-dependent, two-body force by averaging
over the third nucleon in the medium, the average being
weighted by the BHF defect function g, which takes account
of the nucleon-nucleon in-medium correlations [6,8,20]:

Vij (r) = ρ

∫
d3rk

∑

σk ,τk

[1 − g(rik)]2[1 − g(rjk)]2Vijk. (5)

The resulting effective two-nucleon potential has the operator
structure

Vij (r) = (τ i ·τ j )(σ i ·σ j )V τσ
C (r) + (σ i ·σ j )V σ

C (r) + VC(r)

+ Sij (r̂)
[
(τ i ·τ j )V τ

T (r) + VT (r)
]

(6)

and the components V τσ
C , V σ

C , VC, V τ
T , VT are density depen-

dent. They are added to the bare potential in the Bethe-
Goldstone equation (1) and are recalculated together with
the defect function in every iteration step until convergence
is reached. This approach has so far been followed with the
Paris [6], the V14, and the V18 [7] potentials and the results
will be shown in the following presentation of our results. For
complete details, the reader is refered to Refs. [5–7].

We begin in Fig. 1 with the saturation curves obtained with
our set of NN potentials. On the standard BHF level (black
curves) one obtains in general too strong binding, varying
between the results with the Paris, V18, and Bonn C potentials
(less binding), and those with the Bonn A, N3LO, and IS
(very strong binding). Including TBF (with the Paris, V14,
and V18 potentials; red curves) adds considerable repulsion
and yields results slightly less repulsive than the DBHF ones
with the Bonn potentials [16] (green curves). This is not
surprising, because it is well known that the major effect of the
DBHF approach amounts to including the TBF corresponding
to nucleon-antinucleon excitation by 2σ exchange within the
BHF calculation [6,7]. This is illustrated for the case of the V18
potential (open stars) by the dashed (red) curve in the
figure, which includes only the 2σ -exchange “Z-diagram”
TBF contribution. The remaining TBF components are overall
attractive and produce the final solid (red) curve in the
figure.

Figure 2 shows the saturation points of symmetric matter
extracted from the previous results. Indeed there is a strong
linear correlation between saturation density and energy,
confirming the concept of the Coester line. One can roughly
identify three groups of results: The DBHF results with the
Bonn potentials as well as the BHF+TBF results with the Paris,
V14, and V18 potentials lie in close vicinity of the empirical
value. The BHF results with Paris, V14, V18, and Bonn C form
a group with about 1–2 MeV too-large binding and saturation

FIG. 1. (Color online) Energy per nucleon of symmetric nuclear
matter obtained with different potentials and theoretical approaches.
For details see text.

at about 0.27 fm−3. The remaining potentials, in particular the
most recent CD-Bonn, N3LO, and IS, yield strong overbinding
at larger density, more than twice saturation density in the
latter cases. From a practical point of view, it would therefore
appear convenient to use the potentials of the former group
for approximate many-body calculations, because the required
corrections are smaller, at least for Brueckner-type approaches.

Historically, there is the observation that the position of
a saturation point on the Coester line seems to be strongly

FIG. 2. (Color online) Saturation points obtained with different
potentials and theoretical approaches. The (online blue) square
indicates the empirical region.

047304-2

R.Brockmann and R. Machleidt, Phys. Rev. C 42 (1990)1965.  
Z. H. Li, et al., Phys. Rev. C74 (2006) 047304 
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Correlation functions
The key of ab initio calculations in nuclear matter
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 Real wave function
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Correlation functions

Unitary correlation operator method 
H. Feldmeier, T.Neff, R.Roth, and J.Schnack, et al., Nucl. Phys. A632 (1998) 61
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Brueckner Hartree-Fock theory 
Z. H. Li, et al., Phys. Rev. C 74 (2006)047304

Variational method 
A.Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev. C 58 (1998)1804

Green function method 
S. Gandolfi, et al., Phys. Rev. C 79 (2009) 054005
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Variational method

The correlation functions in variational method

( )p p
ij ij

p
F f r O=∑

Spin, isospin

Jastrow function
For example, 

H. Togashi and M. Takano, Nucl. Phys. A 902(2013)53  
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Cluster expansion

The expectation values of Hamiltonian  

Cluster expansion in variational energy
2

1
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J. Morales, et al. Phys. Rev. C 66(2002)054308  
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Hamiltonian
H
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Bonn potentials
R. Brockmann, R. Machleidt, Phys. Rev. C 42 (1990)1965.
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Variational method
The energy with correlation function

Relativistic plane
 wave function

Constraint of correlation function

Central correlation function
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Variational method
Correlated energy density

Correlated Hamiltonian
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The correlation function
The form of correlation function

Variational method
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Symmetric nuclear matter

JH, H. Toki and H. Shen, Jour. Phys G. 38(2011)085105
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Pure neutron matter
JH, H. Toki and H. Shen, Jour. Phys. G. 38(2011)085105
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Asymmetric nuclear matter
JH, H. Toki and H. Shen, Jour. Phys. G. 38(2011)085105
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Kinetic energy correlation
JH, H. Toki and H. Shen, Jour. Phys. G. 38(2011)085105
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Neutron star matter
Lagrangian of leptons 

l:  e,  m   

Charge neutrality conditions 

p n e

eµ

µ µ µ

µ µ

= −

=

Beta equilibrium conditions

p e µρ ρ ρ= +

L =
X

l

 ̄(i�µ@
µ �ml) l
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Equation of state
JH, H. Shen, and H. Toki, Phys. Rev. C,95 (2011)025804
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Equation of state
JH, H. Shen, and H. Toki, Phys. Rev. C,95 (2011)025804
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Neutron star properties
Potential RHFJ RBHF

Mmax(M!) R(km) ρc(fm-3) Mmax(M!) R(km) ρc(fm-3)

Bonn A 2.1841 10.99 1.078 2.2401 10.74 1.013

Bonn B 2.1805 11.08 1.078 2.2399 10.79 1.008
Bonn C 2.1786 11.22 1.076 2.2384 10.83 1.003

RBHF: P. G. Krastev, F. Sammarruca, Phys. Rev.C 74 (2006)025808.
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Ratio of particles
JH, H. Shen, and H. Toki, Phys. Rev. C,95 (2011)025804
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URCA process
JH, H. Shen, and H. Toki, Phys. Rev. C,95 (2011)025804
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Effective masses
JH, H. Shen, and H. Toki, Phys. Rev. C,95 (2011)025804
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The correlation on kinetic energy

JH, H. Shen, and H. Toki, Phys. Rev. C,95 (2011)025804
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Summary and Respectives
We extended the variational method to relativistic 
framework with central correlation 

The properties of nuclear matter in relativistic variational 
method could be comparable with RBHF theory  

We also applies such methods on the study of neutron 
star. The maximum mass of neutron star is around 2.18 
solar mass.  

The more correlation functions will included.


