Nucleosynthesis in Ultra-Stripped Supernovae

Mon. Not. R. Astron. Soc. 471, 4275 (2017)

Takashi Yoshida¹ Yudai Suwa², Hideyuki Umeda¹, Masaru Shibata^{2,3}, Koh Takahashi⁴

Department of Astronomy, Graduate School of Science, University of Tokyo
Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University
Max Planck Institute for Gravitational Physics, Germany
Argelander-Institute für Astronomie, Universität Bonn, Germany

Physics of Core-Collapse Supernovae and Compact Star Formation March 19th, 2018, Waseda University

Ultra-Stripped Supernova

Ultra stripped SN
^{2.4}/_{2.4} SN of which H and He envelope has been lost in binary system
Small ejecta mass (Tauris et al. 2013; Suwa, TY et al. 2015; Moriya et al. 2017)
A possible generation site of binary neutron stars and

neutron star mergers

(Ejection of a half of the total mass disrupts a binary system.)

Standard channel producing NS-NS binary

e.g., Podsiadlowski et al. (2005) 14 9 P=190^d Massive star binary Case B mass transfer from the primary star 1.337 2.4

350^d

8.8^y

11

11

He star & MS star

SN explosion of

the primary star

Mass transfer from

the secondary star

4

1.337

Common envelope and spiral-in phase

Neutron star & He star

^{2.6^h} Mass transfer from He star

- • SN explosion of the secondary star Ultra-stripped SN
- • ^{3.3^h} NS-NS binary 1.338 1.249 J0737-3039

1.338

NS-NS merging

Rapidly decaying optical transients

Ultra-stripped SNe

A candidate of *rapidly-decaying faint optical transients*

- SN 2005ek (Ic): $M_{\rm ej} \sim 0.3 M_{\odot}$, $M({}^{56}{\rm Ni}) \sim 0.03 M_{\odot}$ (Drout et al. 2013)
 - SN 2010X (.Ia) (Kasliwal et al. 2010), SN 2005E (Ib) (Perets et al. 2010)
- **The rate of rapidly decaying SNe is 4%-7% of CC SNe.** (Drout et al. 2014)

The ratio of ultra-stripped SNe to CC SNe is ~ 0.001 - 0.01. (Tauris et al. 2013)

Similarity to electron-capture SNe

Ultra-stripped SNe having a small CO core

• Weak explosion and small ejecta mass

(Suwa, TY et al. 2015)

A possibility of the nucleosynthesis similar to EC SNe

Nucleosynthesis in EC SNe (Wanajo et al. 2011)

- **o** Small ⁵⁶Ni amount
- Production of light trans-iron elements from *n*-rich matter

Electron fraction: Y_e (0.404 < Y_{e} , < 0.55)

Ultra-stripped SNe could be a site of light trans-iron elements.

Nucleosynthesis in ultra-stripped Type Ic SNe

- We investigate the nucleosynthesis in ultra-stripped Type Ic SNe.
- Production of trans-iron elements
- 56Ni amount and light curve

Nucleosynthesis in ultra-stripped Type Ic SNe

- Stellar evolution of 1.45 and 1.5 M_{\odot} CO stars (CO145 and CO15) (Suwa, TY et al. 2015)
- 2D v-radiation hydrodynamics simulation of SN explosions for 1.3 s
- Postprocessing nucleosynthesis of ~10,000 traced fluid particles of SN ejecta using a nuclear reaction network of 1651 nuclei up to Ce

Ejected mass distribution

Ejected mass distribution

Ejected mass distribution about Y_e at the initial time of the nucleosynthesis calculation

for CO145 and CO15 models

We will discuss the uncertainty in the Y_e range later.

Abundance ratios to the Solar composition

Uncertainty in ejected mass distribution on Y_e

SN explosion of a 9.6 M_{\odot} star (Müller 2016)

Vertex-CoCoNuT (Two-moment scheme with variable Eddington factors from a model Boltzmann equation.) Sophistication of the microphysics

CoCoNuT-FMT (Dynamic one-moment closure scheme)

Systematic differences by neutrino transport treatments

Ye distribution also depends on microphysics (e.g. Roberts et al. 2012)

Y_e modification

Y_e distributions having similar distributions of EC SN and normal SN for *neutrino-irradiated materials* of CO145 model

• Ye-W model > EC SN-like (Wanajo et al. 2011)

Ye-B model Normal SN-like (Buras et al. 2006)

Takashi Yoshida, March 19, 2018, Waseda University

Y_e modification

Sc is produced in *p***-rich ejecta.** (Pruet et al. 2006; Fröhlich et al. 2006)

Light curves of modified Y_e models

Light curves are evaluated using the analytical solution shown in Arnett (1982).

$$M(^{56}Ni) = 9.7 \times 10^{-3} M_{\odot}(CO145)$$

= 5.7×10⁻³ $M_{\odot}(CO15)$
= 2.9×10⁻² $M_{\odot}(Ye-B)$

The peak magnitude is ~ -16.5 for CO145 Ye-B model.

The peak value is close to SN 2005ek.

Y_e distribution in neutrino-irradiated ejecta is also important for light curve.

Summary

 Nucleosynthesis of ultra-stripped Type Ic SNe 1.45 and 1.5 M_oCO star progenitors
Explosions of the ultra-stripped SNe Weak explosion (E ~ 10⁵⁰ ergs)

> Small ejecta mass ($M_{\rm ej} \sim 0.1 M_{\odot}$) and ⁵⁶Ni yield (< 0.01 M_{\odot}) Rapidly-decaying faint light curve

Light trans-iron elements are produced in neutrino-irradiated ejecta
Produced in mildly neutron-rich materials (Y_e > 0.36)

Uncertainties in the Y_e distribution of the SN ejecta
Yield and abundance distribution of light trans-iron elements
Magnitude of light curve through ⁵⁶Ni yield

TY et al. (2017): Mon. Not. R. Astron. Soc. 471, 4275