Supernova equation of state with realistic nuclear interactions and hyperon mixing in hot dense matter

<u>H. Togashi</u> (RIKEN)

Collaborators: M. Takano, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, K. Sumiyoshi, E. Hiyama

Outline

1: Introduction

2: Supernova EOS with realistic nuclear forces

3: Hyperon mixing in dense matter

4: Summary

International conference on "Physics of core-collapse supernovae and compact star formations" (a) Waseda Univ., March 19, 2018

1. Introduction

Supernova equation of state (SN-EOS)

Model	Nuclear	Degrees	$M_{\rm max}$	$R_{1.4M_{\odot}}$	Ξ	publ.	References
	Interaction	of Freedom	(M _☉)	(km)		avail.	
H&W	SKa	$n, p, \alpha, \{(A_i, Z_i)\}$	2.21^a	$13.9^{\ a}$		n	El Eid and Hillebrandt (1980); Hillebrandt et al. (1984)
LS180	LS180	Shurma tuna affact	ina ir	toract	ion	у	Lattimer and Swesty (1991)
LS220	LS220	Skyrme-type effect	kyrme-type ejjective th			у	Lattimer and Swesty (1991)
LS375	LS375	$n, p, \alpha, (A, Z)$	2.72	14.5	0.32	у	Lattimer and Swesty (1991)
STOS	TM1	$n, p, \alpha, (A, Z)$	2.23	14.5	0.26	у	Shen et al. (1998); Shen et al. (1998, 2011)
FYSS	TM1	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.22	14.4	0.26	n	Furusawa et al. (2013b)
HS(TM1)	TM1*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.21	14.5	0.26	у	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(TMA)	TMA*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.02	13.9	0.25	у	Hempel and Schaffner-Bielich (2010)
HS(FSU)	FSUgold*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	1.74	12.6	0.23	у	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(NL3)	NL3*	Relativistic Mean	ativistic Mean Field		Theory		Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(DD2)	DD2		1 1010	incory		у	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(IUFSU)	IUFSU*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	1.95	12.7	0.25	У	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
SFHo	\mathbf{SFHo}	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.06	11.9	0.30	у	Steiner et al. (2013a)
SFHx	\mathbf{SFHx}	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.13	12.0	0.29	У	Steiner et al. (2013a)
SHT(NL3)	NL3	$n, p, \alpha, \{(A_i, Z_i)\}$	2.78	14.9	0.31	У	Shen <i>et al.</i> (2011b)
SHO(FSU)	FSUgold	$n, p, \alpha, \{(A_i, Z_i)\}$	1.75	12.8	0.23	у	Shen <i>et al.</i> (2011a)
SHO(FSU2.1)	FSUgold2.1	$n, p, \alpha, \{(A_i, Z_i)\}$	2.12	13.6	0.26	у	Shen <i>et al.</i> (2011a)

(M. Oertel et al., Rev. Mod. Phys. 89 (2017) 015007)

There is no SN-EOSs based on the microscopic many-body theory.

We aim to construct a new SN-EOS with the variational method starting from bare nuclear forces.

Our procedure to construct a new EOS table

2. Supernova EOS with realistic nuclear forces

Nuclear Hamiltonian

- The expectation value of the Hamiltonian is calculated in *the two-body cluster approximation*.
- The prescription by Schmidt and Pandharipande is employed to obtain the free energy *at finite temperature*.

(Phys. Lett. 87B(1979) 11, PRC 75(2007) 035802)

Nuclear EOS for uniform matter

n_0 [fm ⁻³]	E_0 [MeV]	<i>K</i> [MeV]	E _{sym} [MeV]
0.16	-16.1	245	30.0

Our EOS : HT and M. Takano, NPA 902 (2013) 53 APR : A. Akmal, V. R. Pandharipande, D. G. Ravenhall, PRC 58 (1998) 1804 FHNC : A. Mukherjee, PRC 79(2009) 045811

Nuclear EOS for non-uniform matter

We use the Thomas-Fermi method by Shen et al. (PTP 100 (1998) 1013, APJS 197(2011) 20)

Home Page of Variational EOS Table

http://www.np.phys waseda ac in/EOS/

Equation of state for nuclear matter v

Equation of state (EOS) based on the variational man matter, the EOS is constructed with the cluster variat potential and the Urbana IX three-body nuclear poter approximation. Alpha particle mixing is also taken into This EOS table is open for general use in any studies referred to in your publication.

User's Guide (read m

User's Guide User Note for the Variational EOS Table

H. Togashi^{1,2}, K. Nakazato³, H. Suzuki⁴, and M. Takano²

¹RIKEN Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198, Japan
²Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan

³Faculty of Arts and Science, Kyushu University, Fukuoka 891-0395, Japan
⁴Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan

March 8, 2017

Abstract

This is a guide for users of the nuclear equation of state (EOS) table based on the Argonne v18 two-body and Urbana IX three-body potentials. We construct the nuclear EOS using the cluster variational method for uniform matter and the Thomas-Fermi calculation for non-uniform matter.

EOS tables

eoszip

С

Numerical Data

		5.100E+00	7.581427E-11	1.000E-02 -1	1.516998E+00	7.968970E+00	1.427632E+01	1.004453E+02
ontact		5.200E+00	9.544451E-11	1.000E-02 -1	1.494684E+00	7.968916E+00	1.405264E+01	1.005867E+02
ontact		5.300E+00	1.201575E-10	1.000E-02 -1	1.472371E+00	7.968862E+00	1.382897E+01	1.007294E+02
		5.400E+00	1.512693E-10	1.000E-02 -1	1.450059E+00	7.968809E+00	1.360532E+01	1.008713E+02
 Hajime Togas 		5.500E+00	1.904368E-10	1.000E-02 -1	1.427748E+00	7.968757E+00	1.338169E+01	1.010151E+02
e najina rega		5.600E+00	2.397458E-10	1.000E-02 -1	1.405439E+00	7.968705E+00	1.315807E+01	1.011550E+02
Nishina Centre		5.700E+00	3.018220E-10	1.000E-02 -1	1.383130E+00	7.968653E+00	1.293447E+01	1.013009E+02

2-1 Hirosawa, wako, saitama 351-0198, Japan

cccccccccc

Log10(Temp)

Temp

1,000000E-01

Application to neutron star Mass-Radius relation of neutron stars 3.0 Variational Shen 2.5 LS180 J0348+0432 LS220 2.0 M/M LS375 J1614-2230 HS (FSUgold) 1.5 HS (TMA) _._... HS (NL3) HS (DD2) 1.0 HS (IUFSU) **SFHo** 0.5 SFHx 0.0 8 16 1014 18 12 6 R [km] J0348+0432: Science 340 (2013) 1233232

J1614-2230: Nature 467 (2010) 1081

Application to Core-Collapse Supernovae

1D neutrino-radiation hydrodynamics simulations Progenitor: Woosley Weaver 1995, $15M_{\odot}$ Astrophys. J. Suppl. 101 (1995) 181 SN simulation numerical code: K. Sumiyoshi, et al., NPA 730 (2004) 227

3. Hyperon mixing in dense matter

$$H = H_N - \frac{\hbar^2}{2m_\Lambda} \sum_i \nabla_i^2 + \sum_{i < j} \left[\frac{V_{ij}^{\Lambda N} + V_{ij}^{\Lambda \Lambda}}{I_i} \right]$$

*H*_N: Nuclear Hamiltonian (AV18+UIX)

Two-Body Central Potentials

 $V_{ij}^{\Lambda N}$: **A-Nucleon (N) potential** (E. Hiyama et al., PRC 74 (2006) 054312) - Constructed so as to reproduce the experimental binding energies of light Λ hypernuclei with the Gaussian expansion method.

 $V_{ij}^{\Lambda\Lambda}: \Lambda-\Lambda \text{ potential} \qquad (E. \text{ Hiyama et al., PRC 66 (2002) 024007})$ - the experimental double- Λ binding energy from ${}_{\Lambda\Lambda}{}^{6}He$ (NAGARA event)

Using the variational method for hot hyperon matter,

We calculate the thermodynamic quantities of hot dense matter **under the equilibrium condition** $\mu_n = \mu_A$ at fixed baryon number density n_B , proton fraction Y_p , and temperature *T*.

Supernova EOS with Λ hyperon

by the Λ hyperon mixing than in the case of the Shen EOS.

Neutron star matter with Λ hyperon

Mass-radius relations of neutron stars

 Λ fractions in neutron star matter

We consider an effective potential based on **Three-Baryon Force (TBF)** for ΛNN , $\Lambda\Lambda N$, $\Lambda\Lambda\Lambda$ systems.

(Y. Yamamoto et al., PRC 90 (2014) 04580, HT et al., PRC 93 (2016) 035808)

Supernova matter with Λ hyperon

Supernova matter

- Charge neutral and Isentropic matter (The entropy per baryon $S \sim 1-2$)
- Neutrino-free or neutrino-trapped ($Y_l = Y_e + Y_{ve} = 0.3$) β -stable matter

 X_{Λ} in neutrino-trapped supernova matter $(Y_{\rm p} \sim 0.25)$

 X_{Λ} in neutrino-free supernova matter $(Y_{\rm p} \sim 0.1)$

Summary

A new nuclear EOS for astrophysical simulations is constructed with realistic nuclear forces (AV18 + UIX).

- uniform nuclear matter : the cluster variational method
- Non-uniform nuclear : the Thomas-Fermi calculation
- Our SN-EOS is available at
 http://www.np.phys.waseda.ac.jp/EOS/

NSE model based on the variational EOS for uniform matter https://sites.google.com/site/furusawashun/eosdata

Variational EOS is being extended to consider Λ hyperon mixing in nuclear matter.

- Trapped neutrino reduces Λ mixing in supernova cores.
- Hyperon three-body force shifts the onset density of Λ hyperon to higher density region.