Equations of State of Compact Star Matter with Clusters and Phase Transitions
Stefan Typel

Workshop
“Physics of Core-Collapse Supernovae and Compact Star Formations”

Waseda University, Tokyo, Japan
March 19 – 21, 2018

X-ray: NASA/CXC/J. Hester (ASU)
Optical: NASA/ESA/J. Hester & A. Loll (ASU)
Outline

▶ Introduction

▶ Part 1:
 Generalized Relativistic Density Functional for Nuclei and Compact Star Matter

▶ Part 2:
 CompStar Online Supernovae Equations of State (CompOSE)

▶ Conclusions
Introduction
Strongly Interacting Matter

Development of a unified phenomenological description of

- atomic nuclei
 - light to (super-) heavy, stable and exotic
- nuclear matter
 - all relevant degrees of freedom
 - with phase transitions
Strongly Interacting Matter

development of a unified phenomenological description of

► atomic nuclei
 ► light to (super-) heavy, stable and exotic

► nuclear matter
 ► all relevant degrees of freedom
 ► with phase transitions

► compact star matter
 ► for all densities, temperatures, and isospin asymmetries
 ► with inhomogeneities, clustering
 ► for neutron stars, their mergers and core-collapse supernovae
Essential ingredient in astrophysical model calculations

- Static properties of neutron stars
- Dynamical evolution of core-collapse supernovae, neutron star mergers
- Conditions for nucleosynthesis
- Energetics, chemical composition, transport properties
essential ingredient in astrophysical model calculations

- static properties of **neutron stars**
- dynamical evolution of **core-collapse supernovae**, neutron star mergers
- conditions for **nucleosynthesis**
- energetics, **chemical composition**, transport properties

timescale of reactions \(\ll \) timescale of system evolution

- **equilibrium** (thermal, chemical, . . .)
- application of **EoS** reasonable
wide range of thermodynamic variables

- temperature \(T \)
- baryon density \(n_b \)
- hadronic charge fraction \(Y_q \) or isospin asymmetry \(\beta = 1 - 2Y_q \)
wide range of thermodynamic variables

- **temperature** T
- **baryon density** n_b
- **hadronic charge fraction** Y_q or
 isospin asymmetry $\beta = 1 - 2Y_q$

modeling of nuclear matter
and stellar matter

- **different systems and conditions**
wide range of thermodynamic variables

- **temperature** T
- **baryon density** n_b
- **hadronic charge fraction** Y_q or isospin asymmetry $\beta = 1 - 2 Y_q$

modeling of nuclear matter and stellar matter
- different systems and conditions

⇒ **global, multi-purpose EoS** required

EoS review: M. Oertel et al., Rev. Mod. Phys. 89 (2017) 015007
Theoretical Approaches

- **hadronic ’ab-initio’ methods with realistic interactions**
 - interactions: potential models, meson-exchange, chiral forces, RG evolved (Argonne, Urbana, Tucson-Melbourne, Nijmegen, Paris, Bonn, ...)
 - two-body NN interaction (in vacuum) well constrained by experiment, three-body forces less, large uncertainties for YN, YY, etc.
 - many-body methods: BHF/DBHF, SCGF, CBF, VMC, GFMC, AFDMC, ...
Theoretical Approaches

- **hadronic ’ab-initio’ methods with realistic interactions**
 - interactions: potential models, meson-exchange, chiral forces, RG evolved (Argonne, Urbana, Tucson-Melbourne, Nijmegen, Paris, Bonn, ...)
 - two-body NN interaction (in vacuum) well constrained by experiment, three-body forces less, large uncertainties for YN, YY, etc.
 - many-body methods: BHF/DBHF, SCGF, CBF, VMC, GFMC, AFDMC, ...

- **QCD-based/inspired descriptions**
 - Lattice QCD, pQCD, DS, (P)NJL, bag models, ...

- **effective field theories (EFT)**
 - chiral EFT, nuclear lattice EFT, ...
Theoretical Approaches

- **hadronic ’ab-initio’ methods with realistic interactions**
 - interactions: potential models, meson-exchange, chiral forces, RG evolved (Argonne, Urbana, Tucson-Melbourne, Nijmegen, Paris, Bonn, ...)
 - two-body NN interaction (in vacuum) well constrained by experiment, three-body forces less, large uncertainties for YN, YY, etc.
 - many-body methods: BHF/DBHF, SCGF, CBF, VMC, GFMC, AFDMC, ...

- **QCD-based/inspired descriptions**
 - Lattice QCD, pQCD, DS, (P)NJL, bag models, ...

- **effective field theories (EFT)**
 - chiral EFT, nuclear lattice EFT, ...

- methods not always applicable (methodological/technical limitations)
- many EoS for neutron matter & neutron star matter, but no global EoS for astrophysical applications available from these approaches
 - only **phenomenological models** for global EoS at present
EoSs for Astrophysical Applications

- **constituents:** mostly considered are nucleons, nuclei (light/heavy/representative), leptons, photons, ...
EoSs for Astrophysical Applications

- **constituents:** mostly considered are nucleons, nuclei (light/heavy/representative), leptons, photons, . . .
- **models:** often combination of different approaches
 (Skyrme/Gogny/relativistic mean-field models, NSE, virial EoS, density functionals, classical/quantum molecular dynamics, . . .)
EoSs for Astrophysical Applications

- **constituents:** mostly considered are nucleons, nuclei (light/heavy/representative), leptons, photons, . . .

- **models:** often combination of different approaches (Skyrme/Gogny/relativistic mean-field models, NSE, virial EoS, density functionals, classical/quantum molecular dynamics, . . .)

- **global EoSs used in astrophysical simulations:**
 - HS (TM1,TMA,FSUgold,NL3,DD2,IUFSU): M. Hempel, J. Schaffner-Bielich, NPA 837 (2010) 210
 - recently many more, also with additional degrees of freedom (hyperons, quarks)
constituents: mostly considered are nucleons, nuclei (light/heavy/representative), leptons, photons, . . .

models: often combination of different approaches
(Skyrme/Gogny/relativistic mean-field models, NSE, virial EoS, density functionals, classical/quantum molecular dynamics, . . .)

global EoSs used in astrophysical simulations:
- HS (TM1,TMA,FSUgold,NL3,DD2,IUFSU): M. Hempel, J. Schaffner-Bielich, NPA 837 (2010) 210
- recently many more, also with additional degrees of freedom (hyperons, quarks)

challenge:
covering of full range of thermodynamic variables in a unified model
⇒ here: generalized relativistic density functional
Generalized Relativistic Density Functional for Nuclei and Compact Star Matter
Objective: development of improved EoS model with

- extended set of constituent particles
 - *nuclear matter*: nucleons, nuclei/clusters, ..., mesons, hyperons, ..., quarks
 - *stellar matter*: add electrons, muons, photons
Objective: development of improved EoS model with

- extended set of constituent particles
 - nuclear matter: nucleons, nuclei/clusters, ... , mesons, hyperons, ... , quarks
 - stellar matter: add electrons, muons, photons
- more serious consideration of correlations
 - nucleon-nucleon correlations: clustering, pairing
 - Pauli principle: dissolution of composite particles in medium (Mott effect)
 - electromagnetic correlations: essential for solidification/melting
objective: development of improved EoS model with

- extended set of constituent particles
 - nuclear matter: nucleons, nuclei/clusters, ..., mesons, hyperons, ..., quarks
 - stellar matter: add electrons, muons, photons

- more serious consideration of correlations
 - nucleon-nucleon correlations: clustering, pairing
 - Pauli principle: dissolution of composite particles in medium (Mott effect)
 - electromagnetic correlations: essential for solidification/melting

- better constrained model parameters
 - constraints: properties of nuclei, compact stars, heavy-ion collisions, theory
objective: development of improved EoS model with

- extended set of constituent particles
 - *nuclear matter*: nucleons, nuclei/clusters, . . . , mesons, hyperons, . . . , quarks
 - *stellar matter*: add electrons, muons, photons
- more serious consideration of correlations
 - *nucleon-nucleon correlations*: clustering, pairing
 - *Pauli principle*: dissolution of composite particles in medium (Mott effect)
 - *electromagnetic correlations*: essential for solidification/melting
- better constrained model parameters
 - *constraints*: properties of nuclei, compact stars, heavy-ion collisions, theory
- correct treatment of phase transitions
 - distinguish nuclear matter and stellar matter
 - “non-congruent” phase transitions, gas/liquid/solid(cry stall) phases
Generalized Relativistic Density Functional

- **objective:** development of improved EoS model with
 - extended set of constituent particles
 - *nuclear matter*: nucleons, nuclei/clusters, ..., mesons, hyperons, ..., quarks
 - *stellar matter*: add electrons, muons, photons
 - more serious consideration of correlations
 - *nucleon-nucleon correlations*: clustering, pairing
 - *Pauli principle*: dissolution of composite particles in medium (Mott effect)
 - *electromagnetic correlations*: essential for solidification/melting
 - better constrained model parameters
 - *constraints*: properties of nuclei, compact stars, heavy-ion collisions, theory
 - correct treatment of phase transitions
 - distinguish nuclear matter and stellar matter
 - “non-congruent” phase transitions, gas/liquid/solid(crystal) phases

only a selection from these topics considered here
Description of Nuclear Matter and Finite Nuclei

basic approach: relativistic mean-field (RMF) models

- energy density functional
 - origin: field theoretical description
 - derived from Lagrangian density, mean-field approximation
 - phenomenological description
basic approach: relativistic mean-field (RMF) models

▶ energy density functional
 ▶ origin: field theoretical description
 ▶ derived from Lagrangian density, mean-field approximation
 ▶ phenomenological description

▶ various versions
 ▶ interaction: exchange of scalar and vector mesons (σ, ω, ρ, ...)
 ▶ minimal coupling of mesons to nucleons
 ▶ with nonlinear self-interactions
 ▶ with density dependent couplings
 ▶ without explicit meson fields
 ▶ point-coupling models
basic approach: relativistic mean-field (RMF) models

- energy density functional
 - origin: field theoretical description
 - derived from Lagrangian density, mean-field approximation
 - phenomenological description

- various versions
 - interaction: exchange of scalar and vector mesons ($\sigma, \omega, \rho, \ldots$)
 - minimal coupling of mesons to nucleons
 - with nonlinear self-interactions
 - with density dependent couplings
 - without explicit meson fields
 - point-coupling models

- many parametrizations
 - different purposes (finite nuclei, excitations, EoS, \ldots)

(see, e.g., M. Dutra et al., Phys. Rev. C 90 (2014) 055203)
Medium Dependence of Effective Interaction

- interaction contribution to Lagrangian

 - nonlinear (NL) RMF models with meson self-interactions

\[\mathcal{L}_{\text{int}} = \bar{\psi} g_\sigma \sigma \psi - \frac{A}{3} \sigma^3 - \frac{B}{4} \sigma^4 - \bar{\psi} g_\omega \omega_\mu \gamma^\mu \psi + \frac{C}{4} (\omega_\mu \omega^\mu)^2 - \bar{\psi} g_\rho \vec{\rho}_\mu \cdot \vec{\tau} \gamma^\mu \psi \]

 with constants \(g_\sigma, g_\omega, g_\rho, A, B, C, \ldots \)

 (usually scalar and vector contributions not coupled, cross terms added later)
Medium Dependence of Effective Interaction

- **interaction contribution to Lagrangian**
 - nonlinear (NL) RMF models with meson self-interactions
 \[\mathcal{L}_{\text{int}} = \bar{\psi} g_\sigma \sigma \psi - \frac{A}{3} \sigma^3 - \frac{B}{4} \sigma^4 - \bar{\psi} g_\omega \omega_\mu \gamma^\mu \psi + \frac{C}{4} (\omega_\mu \omega^\mu)^2 - \bar{\psi} g_\rho \bar{\rho}_\mu \cdot \bar{\tau} \gamma^\mu \psi \]
 with constants \(g_\sigma, g_\omega, g_\rho, A, B, C, \ldots \)
 (usually scalar and vector contributions not coupled, cross terms added later)
 - density dependent (DD) RMF models
 \[\mathcal{L}_{\text{int}} = \bar{\psi} \Gamma_\sigma \sigma \psi - \bar{\psi} \Gamma_\omega \omega_\mu \gamma^\mu \psi - \bar{\psi} \Gamma_\rho \bar{\rho}_\mu \cdot \bar{\tau} \gamma^\mu \psi \]
 with functionals \(\Gamma_\sigma, \Gamma_\omega, \Gamma_\rho, \ldots \) depending on Lorentz scalars constructed from nucleon fields \(\bar{\psi}, \psi \)
 (motivated by Dirac-Brueckner calculations, more flexible than NL models)

dependence of couplings \(\Gamma_i \) on

- vector density \(\varrho^{(v)} = \sqrt{j^\mu j_\mu} \) with current \(j^\mu = \bar{\psi} \gamma^\mu \psi \) \(\Rightarrow \) standard choice
- scalar density \(\varrho^{(s)} = \bar{\psi} \psi \) \(\Rightarrow \) not really explored so far
Medium Dependence of Effective Interaction

- interaction contribution to Lagrangian
 - nonlinear (NL) RMF models with meson self-interactions
 \[\mathcal{L}_{\text{int}} = \bar{\psi} g_\sigma \sigma \psi - \frac{A}{3} \sigma^3 - \frac{B}{4} \sigma^4 - \bar{\psi} g_\omega \omega_\mu \gamma^\mu \psi + \frac{C}{4} (\omega_\mu \omega^\mu)^2 - \bar{\psi} g_\rho \vec{\rho}_\mu \cdot \vec{\gamma}^\mu \psi \]
 with constants \(g_\sigma, g_\omega, g_\rho, A, B, C, \ldots \)
 (usually scalar and vector contributions not coupled, cross terms added later)
 - density dependent (DD) RMF models
 \[\mathcal{L}_{\text{int}} = \bar{\psi} \Gamma_\sigma \sigma \psi - \bar{\psi} \Gamma_\omega \omega_\mu \gamma^\mu \psi - \bar{\psi} \Gamma_\rho \vec{\rho}_\mu \cdot \vec{\gamma}^\mu \psi \]
 with functionals \(\Gamma_\sigma, \Gamma_\omega, \Gamma_\rho, \ldots \) depending on Lorentz scalars constructed from nucleon fields \(\bar{\psi}, \psi \)
 (motivated by Dirac-Brueckner calculations, more flexible than NL models)
 - dependence of couplings \(\Gamma_i \) on
 - vector density \(\hat{\rho}^{(v)} = \sqrt{j^\mu j_\mu} \) with current \(j^\mu = \bar{\psi} \gamma^\mu \psi \Rightarrow \) standard choice
 - scalar density \(\hat{\rho}^{(s)} = \bar{\psi} \psi \Rightarrow \) not really explored so far

- phenomenological approach \(\Rightarrow \) model parameters determined from fits
 (properties of finite nuclei, characteristic nuclear matter parameters)
Relativistic Density Functionals with Density Dependent Couplings

- First DD-RMF parametrization fitted to energies of selected nuclei:
 - Functional form of couplings: $\Gamma_i(\varrho) = \Gamma_i(\varrho_{ref}) f_i(x)$
 with $f_i(x) = a_i \frac{1+b_i(x+d_i)^2}{1+c_i(x+d_i)^2}$ or $f_i(x) = \exp[-a_i(x - 1)]$ $x = \frac{\varrho}{\varrho_{ref}}$
 - Two parameters for isovector part of effective interaction (only one in standard NL-RMF models)
 - Improved nuclear matter parameters, similar to Skyrme Hartree-Fock models
 - Correlation of neutron skin thickness with slope of neutron matter EoS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TM1</td>
<td>285</td>
<td>36.9</td>
<td>110.8</td>
</tr>
<tr>
<td>NL3</td>
<td>272</td>
<td>37.4</td>
<td>118.5</td>
</tr>
<tr>
<td>TW99</td>
<td>240</td>
<td>32.8</td>
<td>55.3</td>
</tr>
</tbody>
</table>

S. Typel and B.A. Brown, PRC 64 (2001) 027302
first DD-RMF parametrization fitted to energies of selected nuclei:

 - functional form of couplings: $\Gamma_i(\rho) = \Gamma_i(\rho_{\text{ref}}) f_i(x)$
 with $f_i(x) = a_i \frac{1+b_i(x+d_i)^2}{1+c_i(x+d_i)^2}$ or $f_i(x) = \exp[-a_i(x - 1)] \quad x = \frac{\rho}{\rho_{\text{ref}}}$
 - two parameters for isovector part of effective interaction (only one in standard NL-RMF models)
 ⇒ improved nuclear matter parameters, similar to Skyrme Hartree-Fock models
 ⇒ correlation of neutron skin thickness with slope of neutron matter EoS
- many DD-RMF parametrizations in the following
 - DD-ME1 (T. Nikšić et al., PRC 66 (2002) 024306)
 - DD (S. Typel, PRC 71 (2005) 064301)
 - DD-ME2 (G.A. Lalazissis et al., PRC 71 (2005) 024312)
 - DD-F (T. Klähn et al., PRC 74 (2006) 035802)
 - DD2 (S. Typel et al., PRC 81 (2010) 015803)
 - DD-MEδ (X. Roca-Maza et al., PRC 84 (2011) 054309)
 - DD+++ – DD−− (S. Typel, PRC 89 (2014) 064321)
 - …

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TM1 [1]</td>
<td>285</td>
<td>36.9</td>
<td>110.8</td>
</tr>
<tr>
<td>NL3 [2]</td>
<td>272</td>
<td>37.4</td>
<td>118.5</td>
</tr>
<tr>
<td>TW99</td>
<td>240</td>
<td>32.8</td>
<td>55.3</td>
</tr>
</tbody>
</table>

Choice of Functionals

- **density dependence**
 - 'V': dependence of Γ_ω, Γ_σ, Γ_ρ on vector density $\varrho^{(v)}$
 - 'S': dependence of Γ_ω, Γ_σ, Γ_ρ on scalar density $\varrho^{(s)}$
 - 'M': dependence of Γ_ω, Γ_ρ (Γ_σ) on vector (scalar) density $\varrho^{(v)}$ ($\varrho^{(s)}$)
Choice of Functionals

- **density dependence**
 - 'V': dependence of Γ_ω, Γ_σ, Γ_ρ on vector density $\varrho^{(v)}$
 - 'S': dependence of Γ_ω, Γ_σ, Γ_ρ on scalar density $\varrho^{(s)}$
 - 'M': dependence of Γ_ω, Γ_ρ (Γ_σ) on vector (scalar) density $\varrho^{(v)}$ ($\varrho^{(s)}$)

- **functional form for ω and σ mesons**
 - rational function $f_i(x) = a_i \frac{1+b_i(x+d_i)^2}{1+c_i(x+d_i)^2}$ with conditions $f_i(1) = 1$ and
 - 'P': $f_i''(0) = 0$, $d_i > 0$ (positive)
 - 'Z': $f_i'(0) = 0$, $d_i = 0$ (zero)
 - 'N': $f_i''(0) = 0$, $d_i < 0$ (negative)
Choice of Functionals

- **density dependence**
 - 'V': dependence of $\Gamma_\omega, \Gamma_\sigma, \Gamma_\rho$ on vector density $\varrho^{(v)}$
 - 'S': dependence of $\Gamma_\omega, \Gamma_\sigma, \Gamma_\rho$ on scalar density $\varrho^{(s)}$
 - 'M': dependence of $\Gamma_\omega, \Gamma_\rho$ on vector (scalar) density $\varrho^{(v)} (\varrho^{(s)})$

- **functional form for ω and σ mesons**
 - rational function $f_i(x) = a_i \frac{1+b_i(x+d_i)^2}{1+c_i(x+d_i)^2}$ with conditions $f_i(1) = 1$ and
 - 'P': $f_i''(0) = 0$, $d_i > 0$ (positive)
 - 'Z': $f_i'(0) = 0$, $d_i = 0$ (zero)
 - 'N': $f_i''(0) = 0$, $d_i < 0$ (negative)

- **functional form for ρ meson**
 - 'E': exponential function $f_i(x) = \exp[-a_i(x - 1)]$
 - 'R': rational function $f_i(x) = a_i \frac{1+b_i(x+d_i)^2}{1+c_i(x+d_i)^2}$ with conditions $f_i(1) = 1$, $f_i'(0) = 0$, $d_i = 0$, $f_i''(1)/f_i'(1) = f_i'''(1)/f_i''(1)$
Choice of Functionals

- **density dependence**
 - 'V': dependence of Γ_ω, Γ_σ, Γ_ρ on vector density $\varrho^{(v)}$
 - 'S': dependence of Γ_ω, Γ_σ, Γ_ρ on scalar density $\varrho^{(s)}$
 - 'M': dependence of Γ_ω, Γ_ρ (Γ_σ) on vector (scalar) density $\varrho^{(v)}$ ($\varrho^{(s)}$)

- **functional form for ω and σ mesons**
 - rational function $f_i(x) = a_i \frac{1+b_i(x+d_i)^2}{1+c_i(x+d_i)^2}$ with conditions $f_i(1) = 1$ and
 - 'P': $f_i''(0) = 0$, $d_i > 0$ (positive)
 - 'Z': $f_i'(0) = 0$, $d_i = 0$ (zero)
 - 'N': $f_i''(0) = 0$, $d_i < 0$ (negative)

- **functional form for ρ meson**
 - 'E': exponential function $f_i(x) = \exp[-a_i(x - 1)]$
 - 'R': rational function $f_i(x) = a_i \frac{1+b_i(x+d_i)^2}{1+c_i(x+d_i)^2}$ with conditions $f_i(1) = 1$, $f_i'(0) = 0$, $d_i = 0$, $f_i''(1)/f_i(1) = f_i''(1)/f_i'(1)$

 \Rightarrow 18 models with 9 parameters (including ϱ_{ref} and m_σ), fitted to properties of nuclei, similar quality in description, details: S. Typel, Particles 1 (2018) 2
Coupling Functions

- similar smooth functions for ‘P’ and ‘Z’ parametrisations
- minimum in functions for ‘N’ parametrisations (ω and σ mesons)
- only small differences between ‘E’ and ‘R’ parametrisations (ρ meson)
Equations of State at Zero Temperature

- very similar below saturation density
- divergence above saturation density
- strong stiffening for 'N' parametrisations
DD-RMF Parametrization DD2

- fitted to properties of finite nuclei
 (S. Typel et al., PRC 81 (2010) 015803)

- very reasonable nuclear matter parameters
 \(n_{\text{sat}} = 0.149 \text{ fm}^{-3}, \ a_V = 16.02 \text{ MeV}, K = 242.7 \text{ MeV}, J = 31.67 \text{ MeV}, L = 55.04 \text{ MeV} \)
DD-RMF Parametrization DD2

- fitted to properties of finite nuclei
 (S. Typel et al., PRC 81 (2010) 015803)

- very reasonable nuclear matter parameters
 \(n_{\text{sat}} = 0.149 \text{ fm}^{-3}, \quad a_V = 16.02 \text{ MeV}, \quad K = 242.7 \text{ MeV}, \quad J = 31.67 \text{ MeV}, \quad L = 55.04 \text{ MeV} \)

- neutron matter EoS consistent with \(\chi \text{EFT(N}^3\text{LO)} \)

- consistent with unitary gas constraint
Extension of DD-RMF Model

- generalized relativistic density functional (gRDF)
- extended set of particle species
 - nucleons, electrons, muons, photons, hyperons (optional), . . .
 - light nuclei (2H, 3H, 3He, 4He) and heavy nuclei ($A > 4$)
 - shell effects included, full distribution, not only average heavy nucleus
- two-nucleon scattering states
 - consistency with virial EoS at low densities
Extension of DD-RMF Model

- **generalized relativistic density functional (gRDF)**
- **extended set of particle species**
 - nucleons, electrons, muons, photons, hyperons (optional), . . .
 - light nuclei (2H, 3H, 3He, 4He) and heavy nuclei ($A > 4$)
 - ⇒ shell effects included, full distribution, not only average heavy nucleus
 - two-nucleon scattering states
 - ⇒ consistency with virial EoS at low densities

- **excited states of nuclei**
 - temperature dependent degeneracy factors with density of states

- **medium dependence of particle properties**
 - quasiparticle picture, mass shifts
Extension of DD-RMF Model

- **generalized relativistic density functional (gRDF)**
- **extended set of particle species**
 - nucleons, electrons, muons, photons, hyperons (optional), ...
 - light nuclei (2H, 3H, 3He, 4He) and heavy nuclei ($A > 4$)
 - ⇒ shell effects included, full distribution, not only average heavy nucleus
- two-nucleon scattering states
 - ⇒ consistency with virial EoS at low densities
- **excited states of nuclei**
 - temperature dependent degeneracy factors with density of states
- **medium dependence of particle properties**
 - quasiparticle picture, mass shifts
Mass Shifts I

- Concept applies to composite particles: clusters
 - Light and heavy nuclei
 - Nucleon-nucleon correlations in continuum
- Effective change of binding energies
Mass Shifts I

- concept applies to composite particles: clusters
 - light and heavy nuclei
 - nucleon-nucleon correlations in continuum
- effective change of binding energies
- two major contributions $\Delta m_i = \Delta m_i^{\text{strong}} + \Delta m_i^{\text{Coul}}$
 - strong shift $\Delta m_i^{\text{strong}}$
 - effects of strong interaction (coupling to mesons)
 - Pauli exclusion principle: blocking of states in the medium
 \Rightarrow reduction of binding energies
 \Rightarrow cluster dissolution at high densities: Mott effect
 \Rightarrow replaces traditional excluded-volume mechanism
 - electromagnetic shift Δm_i^{Coul} (in stellar matter)
 - electron screening of Coulomb field
 \Rightarrow increase of binding energies
Mass Shifts II

- **light nuclei**
 parametrization from G. Röpke, simplified and modified for high densities and temperatures

- **NN scattering states**
 mass shifts as for deuteron

effective binding energies $B_i^{(\text{eff})} = B_i^{(0)} - \Delta m_i$
 Mass Shifts III

- **light nuclei**
 parametrization from G. Röpke, simplified and modified for high densities and temperatures

- **NN scattering states**
 mass shifts as for deuteron

- **heavy nuclei**
 simple parametrization
Light Clusters in Heavy-Ion Collisions

emission of light nuclei

- determination of density and temperature of source
 - S. Kowalski et al. PRC 75 (2007) 014601
 - J. Natowitz et al. PRL 104 (2010) 202501
 - R. Wada et al. PRC 85 (2012) 064618

- thermodynamic conditions as in neutrinosphere of core-collapse supernovae
emission of light nuclei

- determination of density and temperature of source
 - S. Kowalski et al. PRC 75 (2007) 014601
 - J. Natowitz et al. PRL 104 (2010) 202501
 - R. Wada et al. PRC 85 (2012) 064618

- thermodynamic conditions as in neutrinosphere of core-collapse supernovae

- particle yields \Rightarrow chemical equilibrium constants
 $$K_c[i] = \frac{n_i}{(n_p^{Z_i} n_n^{N_i})}$$
 - L. Qin et al., PRL 108 (2012) 172701

- mixture of ideal gases not sufficient

Cluster Correlations at Nuclear Surface

- gRDF with clusters at zero temperature
 - α-particles at surface of Sn nuclei
 - reduced probability with increasing neutron excess
 - reduction of neutron skin thickness

S. Typel, PRC 89 (2014) 064321
Cluster Correlations at Nuclear Surface

- **gRDF with clusters at zero temperature**
 - α-particles at surface of Sn nuclei
 - reduced probability with increasing neutron excess
 - reduction of neutron skin thickness

S. Typel, PRC 89 (2014) 064321

Experimental tests

- quasifree $(p,p\alpha)$ **knockout** reactions,
 experiment with Sn nuclei in February 2018 at RCNP Osaka: successful detection of α particles with expected trend
- $(d,^6\text{Li})$ **pickup** reactions
 \Rightarrow similar trend in reduced widths

Neutron Star Matter
Hadronic Charge Fraction

▶ neutronization with increasing density

March 19, 2018 | Waseda University, Tokyo, Japan | S. Typel | 51
mass fractions of ^2H and ^4He
Neutron Star Matter
Heavy Clusters

- mass fraction and average mass number
finite temperatures and very low densities: EoS determined by two-body correlations

theoretical benchmark: virial equation of state
 - expansion of powers of fugacities
 - two-body correlations encoded in second virial coefficient
 - depends only on experimental data (phase shifts, binding energies)

finite temperatures and very low densities: EoS determined by two-body correlations

theoretical benchmark: virial equation of state
 - expansion of powers of fugacities
 - two-body correlations encoded in second virial coefficient
 - depends only on experimental data (phase shifts, binding energies)

treatment in generalized relativistic density functional with two-body states as explicit degrees of freedom

(M. D. Voskresenskaya and S. Typel, NPA 887 (2012) 42)
Low-Temperature Limit

- **gap in EoS tables** between $T = 0$ and $T_{\text{min}} > 0$
- **phase transition** from gas/liquid phase to solid phase
- correlations due to Coulomb interaction essential
- lattice-periodic Coulomb potential in crystal
- Wigner-Seitz approximation not sufficient
Low-Temperature Limit

- gap in EoS tables between $T = 0$ and $T_{\text{min}} > 0$
- phase transition from gas/liquid phase to solid phase
- correlations due to Coulomb interaction essential
- lattice-periodic Coulomb potential in crystal
- Wigner-Seitz approximation not sufficient
- better: effective Coulomb contribution from Monte Carlo simulation (molecular dynamics)
 ⇒ phase transition for plasma parameter

\[\Gamma = \frac{Z_{\text{ion}}^{5/3} e^2}{a_e T} \approx 175 \quad a_e = \left(\frac{3n_e}{4\pi} \right)^{1/3} \]

- improved description with model for crystal (in preparation)
example: symmetric nuclear matter

- isothermes in pressure-density diagram
 \[\Rightarrow \text{critical point} \]

 - DD-RMF:
 \[T_c \approx 13.7 \text{ MeV}, \]
 \[n_c \approx 0.04515 \text{ fm}^{-3}, \]
 \[p_c \approx 0.180 \text{ MeV fm}^{-3} \]
 \[\Rightarrow p_c/(n_c T_c) \approx 0.290 \]

 - van-der-Waals gas:
 \[\Rightarrow p_c/(n_c T_c) = 0.375 \]
example: symmetric nuclear matter

▶ isothermes in pressure-density diagram
 ⇒ critical point
 ▶ DD-RMF:
 \[T_c \approx 13.7 \text{ MeV}, \]
 \[n_c \approx 0.04515 \text{ fm}^{-3}, \]
 \[p_c \approx 0.180 \text{ MeV fm}^{-3} \]
 ⇒ \[p_c/(n_c T_c) \approx 0.290 \]
 ▶ van-der-Waals gas:
 ⇒ \[p_c/(n_c T_c) = 0.375 \]

▶ \(T < T_c \): liquid-gas phase transition
 Maxwell construction of coexisting phases
 ⇒ precursor of clustering
coexistence of phases

- general construction with Gibbs conditions: equal intensive variables
 - temperature
 - pressure
 - chemical potentials

⇒ **binodals**
 (enclose phase coexistence regions)
Construction of Phase Transitions I

coexistence of phases

- general construction with Gibbs conditions: equal intensive variables
 - temperature
 - pressure
 - chemical potentials

⇒ **binodals**
 (enclose phase coexistence regions)

- **nuclear matter**
 - consider lines of equal charge chemical potential
 \[\mu_q = \mu_p - \mu_n \]
 ⇒ standard Maxwell construction
 - symmetry with respect to isospin asymmetry
coexistence of phases

- general construction with Gibbs conditions: equal intensive variables
 - temperature
 - pressure
 - chemical potentials

⇒ **binodals**
 (enclose phase coexistence regions)

- **nuclear matter**
 - consider lines of equal charge chemical potential
 \[\mu_q = \mu_p - \mu_n \]
 ⇒ standard Maxwell construction
 - symmetry with respect to isospin asymmetry
coexistence of phases

- general construction with Gibbs conditions: equal intensive variables
 - temperature
 - pressure
 - chemical potentials

⇒ **binodals**
 (enclose phase coexistence regions)

- **supernova matter**
 - specific condition of charge neutrality
 - consider lines of equal lepton chemical potential
 \[\mu_l = \mu_e + \mu_q \]
 ⇒ standard Maxwell construction
 - no symmetry with respect to isospin asymmetry
coexistence of phases

- general construction with Gibbs conditions: equal intensive variables
 - temperature
 - pressure
 - chemical potentials

⇒ binodals
 (enclose phase coexistence regions)

- supernova matter
 - specific condition of charge neutrality
 - consider lines of equal lepton chemical potential
 \[\mu_l = \mu_e + \mu_q \]
 ⇒ standard Maxwell construction
 - no symmetry with respect to isospin asymmetry
Phase Transitions in EoS Tables II

- full gRDF supernova EoS table with DD2 parametrization
 - baryon density: $10^{-12} \text{ fm}^{-3} \leq n_B \leq 1 \text{ fm}^{-3}$
 - temperature: $0.1 \text{ MeV} \leq T \leq 100 \text{ MeV}$
 - hadronic charge fraction: $0.01 \leq T_q \leq 0.60$
Phase Transitions in EoS Tables II

- full gRDF supernova EoS table with DD2 parametrization
 - baryon density: 10^{-12} fm$^{-3} \leq n_B \leq 1$ fm$^{-3}$
 - temperature: 0.1 MeV $\leq T \leq 100$ MeV
 - hadronic charge fraction: $0.01 \leq T_q \leq 0.60$
 - multiple phase transitions
 - coexistence of clustered and homogeneous phases
 - coexistence of two clustered phases with different chemical composition
Phase Transitions in EoS Tables II

- full gRDF supernova EoS table with DD2 parametrization
 - baryon density: $10^{-12} \text{ fm}^{-3} \leq n_B \leq 1 \text{ fm}^{-3}$
 - temperature: $0.1 \text{ MeV} \leq T \leq 100 \text{ MeV}$
 - hadronic charge fraction: $0.01 \leq T_q \leq 0.60$

 ⇒ **multiple phase transitions**
 - coexistence of clustered and homogeneous phases
 - coexistence of two clustered phases with different chemical composition

- global thermodynamic consistency of other EoS tables?
CompStar Online Supernovae Equations of State (CompOSE)
CompOSE – Main Features

- free-access website (compose.obspm.fr)
 - hosted at LUTH, Observatoire de Paris, Meudon
CompOSE – Main Features

- free-access website (compose.obspm.fr)
 - hosted at LUTH, Observatoire de Paris, Meudon

- repository of EoS tables
 - thermodynamic properties, chemical composition, microscopic quantities
 - tabulation in temperature, baryon density and hadronic charge fraction
 - very flexible data format
CompOSE – Main Features

- **free-access website (compose.obspm.fr)**
 - hosted at LUTH, Observatoire de Paris, Meudon

- **repository of EoS tables**
 - thermodynamic properties, chemical composition, microscopic quantities
 - tabulation in temperature, baryon density and hadronic charge fraction
 - very flexible data format

- **handling of EoS data**
 - software for extraction, interpolation and calculation of additional quantities
 - online generation of EoS tables (access restricted)
 - different output formats
CompOSE – Main Features

- **free-access website** (compose.obspm.fr)
 - hosted at LUTH, Observatoire de Paris, Meudon

- **repository of EoS tables**
 - thermodynamic properties, chemical composition, microscopic quantities
 - tabulation in temperature, baryon density and hadronic charge fraction
 - very flexible data format

- **handling of EoS data**
 - software for extraction, interpolation and calculation of additional quantities
 - online generation of EoS tables (access restricted)
 - different output formats

- **documentation**
 - manual and ’how-to’ instructions
 - bibliography of EoS publications
 - links to related projects
CompOSE – Team

▶ core team
 ▶ Chikako Ishizuka (Tokyo Institute of Technology, Japan)
 ▶ Thomas Klähn (California State University Long Beach, USA)
 ▶ Micaela Oertel (LUTH, Observatoire de Paris, France)
 ▶ Stefan Typel (Technische Universität Darmstadt and GSI, Germany)

▶ web support
 ▶ Jean-Yves Giot (LUTH, Observatoire de Paris, France)
 ▶ Marco Mancini (LUTH, Observatoire de Paris, France)
presently available types of tables

- 3-dimensional
 - multi-purpose EoS (58 data sets)
- 2-dimensional
 - zero-temperature EoS (5 data sets)
 - neutron matter EoS (26 data sets)
- 1-dimensional
 - cold β-equilibrated matter EoS (27 data sets)
presently available types of tables

- 3-dimensional
 - multi-purpose EoS (58 data sets)
- 2-dimensional
 - zero-temperature EoS (5 data sets)
 - neutron matter EoS (26 data sets)
- 1-dimensional
 - cold β-equilibrated matter EoS (27 data sets)

EoS files

- parameters (temperature, baryon density and hadronic charge fraction):
 - eos.t, eos.nb, eos.yq
- EoS data: eos.thermo, eos.compo*, eos.micro* (*: optional)
- information on EoS model in data sheet: eos.pdf
- collection of files available as eos.zip
CompOSE – Handling of EoS Data I

software

- FORTRAN code, version 2.16
 (compose.f90, composemodules.f90, out_to_json.f90, Makefile)
- old ‘file version’ (needs input files provided by the user)
- new ‘terminal version’ (default), simple interaction with user
- two output formats: ASCII and HDF5
CompOSE – Handling of EoS Data I

► software
 ▶ FORTRAN code, version 2.16
 (compose.f90, composemodules.f90, out_to_json.f90, Makefile)
 ▶ old ‘file version’ (needs input files provided by the user)
 ▶ new ’terminal version’ (default), simple interaction with user
 ▶ two output formats: ASCII and HDF5

► input files
 ▶ from website: eos.t, eos.nb, eos.yq, eos.thermo, eos.compo, eos.micro
 ▶ provided by user: eos.parameters, eos.quantities
 (only needed for file version of code, created automatically with terminal version)
software

- FORTRAN code, version 2.16
 (compose.f90, composemodules.f90, out_to_json.f90, Makefile)
- old 'file version' (needs input files provided by the user)
- new 'terminal version' (default), simple interaction with user
- two output formats: ASCII and HDF5

input files

- from website: eos.t, eos.nb, eos.yq, eos.thermo, eos.compo, eos.micro
- provided by user: eos.parameters, eos.quantities
 (only needed for file version of code, created automatically with terminal version)

output files

- EoS table: eos.table
- additional information: eos.report
- input for neutron star calculations (if possible): eos.beta
CompOSE – Handling of EoS Data II

▶ web interface
 ▶ access restricted ⇒ registration required
 ▶ generation of EoS tables (in preparation)
 ▶ graphical representation of EoS etc.
 (merger with EOSDB website in planning)
CompOSE – Handling of EoS Data II

- **web interface**
 - access restricted ⇒ registration required
 - generation of EoS tables (in preparation)
 - graphical representation of EoS etc.
 (merger with EOSDB website in planning)

- **LORENE library**
 - cold neutron star EoS can be used as direct input for Nrotstar code
 ⇒ properties of rotating neutron stars
CompOSE – Documentation

- **manual**
 - detailed information on file formats, tabulation scheme, interpolation, ...
 - version 1.00 published (75 pages)
 - new version 2.00 (81 pages, available on website)

- **'quick guide'** (in preparation)
 - simple instructions on how to run the **compose** code
 - examples for different EoS types
CompOSE – Documentation

▶ manual
 ▶ detailed information on file formats, tabulation scheme, interpolation, . . .
 ▶ version 1.00 published (75 pages)
 ▶ new version 2.00 (81 pages, available on website)

▶ ’quick guide’ (in preparation)
 ▶ simple instructions on how to run the compose code
 ▶ examples for different EoS types

▶ online bibliography
 ▶ links to original publications (61 entries)
 ▶ links to EoS data tables

▶ links to other EoS projects
CompOSE – Interaction with Users

- submission of EoS data
 - contact CompOSE core team by sending email to develop.compose@obspm.fr
 - details on preparation of files and transmission will be clarified
CompOSE – Interaction with Users

- **submission of EoS data**
 - contact CompOSE core team by sending email to develop.compose@obspm.fr
 - details on preparation of files and transmission will be clarified

- **extraction of EoS data**
 - direct download of files and instructions from CompOSE website
 - use of web interface
CompOSE – Interaction with Users

▶ submission of EoS data
 ▶ contact CompOSE core team by sending email to develop.compose@obspm.fr
 ▶ details on preparation of files and transmission will be clarified

▶ extraction of EoS data
 ▶ direct download of files and instructions from CompOSE website
 ▶ use of web interface

▶ newsletter
 ▶ mailing list compose.info
 ▶ for subscription send email with subject ’Subscribe’ to develop.compose@obspm.fr
CompOSE – Interaction with Users

- **submission of EoS data**
 - contact CompOSE core team by sending email to develop.compose@obspm.fr
 - details on preparation of files and transmission will be clarified

- **extraction of EoS data**
 - direct download of files and instructions from CompOSE website
 - use of web interface

- **newsletter**
 - mailing list compose.info
 - for subscription send email with subject 'Subscribe' to develop.compose@obspm.fr

- **registration**
 - contact CompOSE core team by sending email to develop.compose@obspm.fr
 - full access to all services with password
CompOSE – Future

- extension of EoS tables
 - dependence on other variables?
 (e.g. magnetic field strength, already implemented partly)
 - choice of other primary variables?
 - additional data (e.g. transport properties)?
CompOSE – Future

- extension of EoS tables
 - dependence on other variables?
 (e.g. magnetic field strength, already implemented partly)
 - choice of other primary variables?
 - additional data (e.g. transport properties)?

- different representation of data
 - polynomials or other functions?

- additional software
 - conversion of tables?

- extension of data base
 - more EoS tables needed!

- other suggestions?
Conclusions
Conclusions

- **EoS for simulations of Core-Collapse Supernovae**
 - big challenge for nuclear theory
 - many aspects:
 - change of particle species, effective interaction, thermodynamics, ...
Conclusions

- **EoS for simulations of Core-Collapse Supernovae**
 - big challenge for nuclear theory
 - many aspects:
 - change of particle species, effective interaction, thermodynamics, ...

- **generalized relativistic density functional**
 - extension of relativistic mean-field model
 - formation and dissolution of nuclear clusters
 - well constrained parameters
Conclusions

- **EoS for simulations of Core-Collapse Supernovae**
 - big challenge for nuclear theory
 - many aspects:
 - change of particle species, effective interaction, thermodynamics, ...

- **generalized relativistic density functional**
 - extension of relativistic mean-field model
 - formation and dissolution of nuclear clusters
 - well constrained parameters

- **CompStar Online Supernovae Equations of State (CompOSE)**
 - repository of EoS tables
 - simple access
 - flexible data format
 - tools for data handling
Thank You